Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 23(9)2022 Apr 28.
Article in English | MEDLINE | ID: mdl-35563314

ABSTRACT

Although genomes from many edible mushrooms are sequenced, studies on fungal micro RNAs (miRNAs) are scarce. Most of the bioinformatic tools are designed for plants or animals, but the processing and expression of fungal miRNAs share similarities and differences with both kingdoms. Moreover, since mushroom species such as Agaricus bisporus (A. bisporus, white button mushroom) are frequently consumed as food, controversial discussions are still evaluating whether their miRNAs might or might not be assimilated, perhaps within extracellular vesicles (i.e., exosomes). Therefore, the A. bisporus RNA-seq was studied in order to identify potential de novo miRNA-like small RNAs (milRNAs) that might allow their later detection in diet. Results pointed to 1 already known and 37 de novo milRNAs. Three milRNAs were selected for RT-qPCR experiments. Precursors and mature milRNAs were found in the edible parts (caps and stipes), validating the predictions carried out in silico. When their potential gene targets were investigated, results pointed that most were involved in primary and secondary metabolic regulation. However, when the human transcriptome is used as the target, the results suggest that they might interfere with important biological processes related with cancer, infection and neurodegenerative diseases.


Subject(s)
Agaricus , MicroRNAs , Agaricus/genetics , Computational Biology/methods , MicroRNAs/genetics , RNA, Fungal , RNA-Seq
2.
Environ Microbiol Rep ; 2(4): 541-53, 2010 Aug.
Article in English | MEDLINE | ID: mdl-23766224

ABSTRACT

In boreal and temperate forest ectomycorrhizal fungi play a crucial role in nitrogen cycling by assimilating nitrogenous compounds from soil and transferring them to tree hosts. The expression profile of fHANT-AC genes, nitrate transporter (Lbnrt), nitrate reductase (Lbnr) and nitrite reductase (Lbnir), responsible for nitrate utilization in the ectomycorrhizal fungus Laccaria bicolor, was studied on variable N regimens. The three genes were shown to be under a common regulation: repressed in the presence of ammonium while growth on nitrate resulted in high transcripts accumulation. The presence of nitrate was shown not to be indispensable for activation of Laccaria fHANT-AC as also N starvation and growth on urea and l-asparagine resulted in high transcript levels. Equally high expression of Laccaria fHANT-AC genes was detected in mycelia grown on variable concentrations of l-glutamine. This finding shows that in L. bicolor N metabolite repression of fHANT-AC is not signalled via l-glutamine like described in ascomycetes. The expression patterns of Lbnrt and Lbnir were also studied in an Lbnr RNA-silenced Laccaria strain. No differences were observed on the N source regulation or the degree of transcript accumulation of these genes, indicating that the presence of high nitrate reductase activity is not a core regulator of L. bicolor fHANT-AC expression. The simultaneous utilization of nitrate and organic N sources, already suggested by high transcript levels of Laccaria fHANT-AC genes on organic N, was supported by the increase of culture medium pH as a result of nitrate transporter activity. The possible ecological and evolutionary significance of the herein reported high regulatory flexibility of Laccaria nitrate utilization pathway for ectomycorrizal fungi and the ectomycorrhizal symbiosis is discussed.

SELECTION OF CITATIONS
SEARCH DETAIL
...