Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Appl Opt ; 63(7): B16-B23, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38437251

ABSTRACT

Thickness measurements of objects, especially transparent and semi-transparent objects, are essential for their characterization and identification. However, in the case of occluded objects, the optical thickness determination becomes difficult, and an indirect way must be devised. Thermal loading of the objects changes their opto-thermal properties, which will be reflected as a change in their optical thickness. The key to quantifying such occluded objects lies in collecting these opto-thermal signatures. This could be achieved by imaging the changes occurring to a probe wavefront passing through the object while it is being thermally loaded. Digital holographic interferometry is an ideal tool for observing phase changes, as it can be used to compare wavefronts recorded at different instances of time. Lens-less Fourier transform digital holographic imaging provides the phase information from a single Fourier transform of the recorded hologram and can be used to quantify occluded phase objects. Here we describe a technique for the measurement of change in optical thickness of thermally loaded occluded phase samples using lens-less Fourier transform digital holography and machine learning. The advantage of the proposed technique is that it is a single shot, lens-less imaging modality for quasi-real-time quantification of phase samples behind thin occlusions.

2.
Rev Sci Instrum ; 94(5)2023 May 01.
Article in English | MEDLINE | ID: mdl-37144944

ABSTRACT

We report a highly stable and affordable dual-wavelength digital holographic microscopy system based on common-path geometry. A Fresnel biprism is used to create an off-axis geometry, and two diode laser sources with different wavelengths λ1 = 532 nm and λ2 = 650 nm generate the dual-wavelength compound hologram. In order to extend the measurement range, the phase distribution is obtained using a synthetic wavelength Λ1 = 2930.5 nm. Furthermore, to improve the system's temporal stability and reduce speckle noise, a shorter wavelength (Λ2 = 292.5 nm) is used. The feasibility of the proposed configuration is validated by the experimental results obtained with Molybdenum trioxide, Paramecium, and red blood cell specimens.

3.
Sensors (Basel) ; 22(20)2022 Oct 11.
Article in English | MEDLINE | ID: mdl-36298048

ABSTRACT

A simplified correlation index is proposed to be used in real-time pulse shape recognition systems. This index is similar to the classic Pearson's correlation coefficient, but it can be efficiently implemented in FPGA devices with far fewer logic resources and excellent performance. Numerical simulations with synthetic data and comparisons with the Pearson's correlation show the suitability of the proposed index in applications such as the discrimination and counting of pulses with a predefined shape. Superior performance is evident in signal-to-noise ratio scenarios close to unity. FPGA implementation of Person's method and the proposed correlation index have been successfully tested and the main results are summarized.


Subject(s)
Algorithms , Signal Processing, Computer-Assisted , Humans , Signal-To-Noise Ratio , Computer Systems , Recognition, Psychology
4.
J Pers Med ; 12(9)2022 Sep 14.
Article in English | MEDLINE | ID: mdl-36143293

ABSTRACT

Type 1 diabetes mellitus (T1DM) patients are a significant threat to chronic kidney disease (CKD) development during their life. However, there is always a high chance of delay in CKD detection because CKD can be asymptomatic, and T1DM patients bypass traditional CKD tests during their routine checkups. This study aims to develop and validate a prediction model and nomogram of CKD in T1DM patients using readily available routine checkup data for early CKD detection. This research utilized 1375 T1DM patients' sixteen years of longitudinal data from multi-center Epidemiology of Diabetes Interventions and Complications (EDIC) clinical trials conducted at 28 sites in the USA and Canada and considered 17 routinely available features. Three feature ranking algorithms, extreme gradient boosting (XGB), random forest (RF), and extremely randomized trees classifier (ERT), were applied to create three feature ranking lists, and logistic regression analyses were performed to develop CKD prediction models using these ranked feature lists to identify the best performing top-ranked features combination. Finally, the most significant features were selected to develop a multivariate logistic regression-based CKD prediction model for T1DM patients. This model was evaluated using sensitivity, specificity, accuracy, precision, and F1 score on train and test data. A nomogram of the final model was further generated for easy application in clinical practices. Hypertension, duration of diabetes, drinking habit, triglycerides, ACE inhibitors, low-density lipoprotein (LDL) cholesterol, age, and smoking habit were the top-8 features ranked by the XGB model and identified as the most important features for predicting CKD in T1DM patients. These eight features were selected to develop the final prediction model using multivariate logistic regression, which showed 90.04% and 88.59% accuracy in internal and test data validation. The proposed model showed excellent performance and can be used for CKD identification in T1DM patients during routine checkups.

5.
Sensors (Basel) ; 22(13)2022 Jun 24.
Article in English | MEDLINE | ID: mdl-35808271

ABSTRACT

In this study, we present a procedure to optimize a set of finite impulse response filter (FIR) coefficients for digital pulse-amplitude measurement. Such an optimized filter is designed using an adapted digital penalized least mean square (DPLMS) method. The effectiveness of the procedure is demonstrated using a dataset from a case study on high-resolution X-ray spectroscopy based on single-photon detection and energy measurements. The energy resolutions of the Kα and Kß lines of the Manganese energy spectrum have been improved by approximately 20%, compared to the reference values obtained by fitting individual photon pulses with the corresponding mathematical model.


Subject(s)
Data Analysis , Signal Processing, Computer-Assisted , Models, Theoretical , Spectrum Analysis , X-Rays
6.
Sensors (Basel) ; 21(5)2021 Mar 04.
Article in English | MEDLINE | ID: mdl-33806350

ABSTRACT

The front-end electronics (FEE) of the Compact Muon Solenoid (CMS) is needed very low power consumption and higher readout bandwidth to match the low power requirement of its Short Strip application-specific integrated circuits (ASIC) (SSA) and to handle a large number of pileup events in the High-Luminosity Large Hadron Collider (LHC). A low-noise, wide bandwidth, and ultra-low power FEE for the pixel-strip sensor of the CMS has been designed and simulated in a 0.35 µm Complementary Metal Oxide Semiconductor (CMOS) process. The design comprises a Charge Sensitive Amplifier (CSA) and a fast Capacitor-Resistor-Resistor-Capacitor (CR-RC) pulse shaper (PS). A compact structure of the CSA circuit has been analyzed and designed for high throughput purposes. Analytical calculations were performed to achieve at least 998 MHz gain bandwidth, and then overcome pileup issue in the High-Luminosity LHC. The spice simulations prove that the circuit can achieve 88 dB dc-gain while exhibiting up to 1 GHz gain-bandwidth product (GBP). The stability of the design was guaranteed with an 82-degree phase margin while 214 ns optimal shaping time was extracted for low-power purposes. The robustness of the design against radiations was performed and the amplitude resolution of the proposed front-end was controlled at 1.87% FWHM (full width half maximum). The circuit has been designed to handle up to 280 fC input charge pulses with 2 pF maximum sensor capacitance. In good agreement with the analytical calculations, simulations outcomes were validated by post-layout simulations results, which provided a baseline gain of 546.56 mV/MeV and 920.66 mV/MeV, respectively, for the CSA and the shaping module while the ENC (Equivalent Noise Charge) of the device was controlled at 37.6 e- at 0 pF with a noise slope of 16.32 e-/pF. Moreover, the proposed circuit dissipates very low power which is only 8.72 µW from a 3.3 V supply and the compact layout occupied just 0.0205 mm2 die area.

7.
Sci Rep ; 10(1): 14891, 2020 09 10.
Article in English | MEDLINE | ID: mdl-32913303

ABSTRACT

A capacitive electromyography (cEMG) biomedical sensor measures the EMG signal from human body through capacitive coupling methodology. It has the flexibility to be insulated by different types of materials. Each type of insulator will yield a unique skin-electrode capacitance which determine the performance of a cEMG biomedical sensor. Most of the insulator being explored are solid and non-breathable which cause perspiration in a long-term EMG measurement process. This research aims to explore the porous medical bandages such as micropore, gauze, and crepe bandage to be used as an insulator of a cEMG biomedical sensor. These materials are breathable and hypoallergenic. Their unique properties and characteristics have been reviewed respectively. A 50 Hz digital notch filter was developed and implemented in the EMG measurement system design to further enhance the performance of these porous medical bandage insulated cEMG biomedical sensors. A series of experimental verifications such as noise floor characterization, EMG signals measurement, and performance correlation were done on all these sensors. The micropore insulated cEMG biomedical sensor yielded the lowest noise floor amplitude of 2.44 mV and achieved the highest correlation coefficient result in comparison with the EMG signals captured by the conventional wet contact electrode.


Subject(s)
Bandages , Biosensing Techniques , Electric Capacitance , Electromyography/instrumentation , Humans , Porosity
SELECTION OF CITATIONS
SEARCH DETAIL
...