Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
AIMS Neurosci ; 10(4): 433-446, 2023.
Article in English | MEDLINE | ID: mdl-38188001

ABSTRACT

Neuropathic pain (NP) is caused by a lesion that triggers pain chronification and central sensitization and it can develop in a different manner, dependent of age. Recent studies have demonstrated the efficacy of transcranial direct current stimulation (tDCS) for treating NP. Then, we aimed to investigate the effects of tDCS and BDNF levels in neuropathic pain rats in development, with 30 days old in the beginning of experiments. Eight-five male Wistar rats were subjected to chronic constriction injury. After establishment of NP, bimodal tDCS was applied to the rats for eight consecutive days, for 20 minutes each session. Subsequently, nociceptive behavior was assessed at baseline, 14 days after surgery, 1 day and 7 days after the end of tDCS. The rats were sacrificed 8 days after the last session of tDCS. An increase in the nociceptive threshold was observed in rats in development 1 day after the end of tDCS (short-term effect), but this effect was not maintained 7 days after the end of tDCS (long-term effect). Furthermore, brain derived neurotrophic factor (BDNF) levels were analyzed in the frontal cortex, spinal cord and serum using ELISA assays. The neuropathic pain model showed an effect of BDNF in the spinal cord of rats in development. There were no effects of BNDF levels of pain or tDCS in the frontal cortex or serum. In conclusion, tDCS is an effective technique to relieve nociceptive behavior at a short-term effect in neuropathic pain rats in development, and BDNF levels were not altered at long-term effect.

2.
Neuroimmunomodulation ; 29(4): 500-514, 2022.
Article in English | MEDLINE | ID: mdl-35108707

ABSTRACT

INTRODUCTION: Given that chronic inflammatory pain is highly prevalent worldwide, it is important to study new techniques to treat or relieve this type of pain. The present study evaluated the effect of transcranial direct current stimulation (tDCS) in rats submitted to a chronic inflammatory model by nociceptive response, biomarker levels (brain-derived neurotrophic factor [BDNF] and interleukin [IL]-6 and IL-10), and by histological parameters. METHODS: Sixty-day-old male Wistar rats were used in this study and randomized by weight into 6 major groups: total control, control + sham-tDCS, control + active tDCS, total CFA, CFA + sham-tDCS, and CFA + active tDCS. After inflammatory pain was established, the animals were submitted to the treatment protocol for 8 consecutive days, according to the experimental group. The nociceptive tests (von Frey and hot plate) were assessed, and euthanasia by decapitation occurred at day 8 after the end of tDCS treatment, and the blood serum and central nervous structures were collected for BDNF and IL measurements. All experiments and procedures were approved by the Institutional Committee for Animal Care and Use (UFPel #4538). RESULTS: The tDCS treatment showed a complete reversal of the mechanical allodynia induced by the pain model 24 h and 8 days after the last tDCS session, and there was partial reversal of the thermal hyperalgesia at all time points. Serum BDNF levels were decreased in CFA + sham-tDCS and CFA + tDCS groups compared to the control + tDCS group. The control group submitted to tDCS exhibited an increase in serum IL-6 levels in relation to the other groups. In addition, there was a significant decrease in IL-10 striatum levels in control + tDCS, CFA, and CFA + sham-tDCS groups in relation to the control group, with a partial tDCS effect on the CFA pain model. Local histology demonstrated tDCS effects in decreasing lymphocytic infiltration and neovascularization and tissue regeneration in animals exposed to CFA. CONCLUSION: tDCS was able to reverse the mechanical allodynia and decrease thermal hyperalgesia and local inflammation in a chronic inflammatory pain model, with a modest effect on striatum IL-10 levels. As such, we suggest that analgesic tDCS mechanisms may be related to tissue repair by modulating the local inflammatory process.


Subject(s)
Transcranial Direct Current Stimulation , Animals , Male , Rats , Anti-Inflammatory Agents , Brain-Derived Neurotrophic Factor , Hyperalgesia/therapy , Inflammation/therapy , Interleukin-10 , Pain , Rats, Wistar , Transcranial Direct Current Stimulation/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...