Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Micron ; 116: 36-45, 2019 01.
Article in English | MEDLINE | ID: mdl-30292168

ABSTRACT

Berry Shrivel (BS) is a post-veraison physiological ripening disorder of grapevine berries. Its symptoms encompass low pH, reduced content of sugars and anthocyanins, and loss of turgor leading to berries shriveling. Evidence for the primary causes of BS is still speculative and anatomical studies are scarce. So far, anatomical studies have determined necrotic cells, degraded primary phloem cells and hardening of secondary phloem cells in the rachis of BS affected grapes. The picture is far from being complete. Herein we report in-depth analyses of the ultrastructure, anatomy and spatial elementary analysis of rachis and pedicel tissues of BS symptomatic grape clusters with different symptom severity. We hypothesize that structural changes in the vascular system of BS affected grape clusters could alter transport functions of the phloem tissue and contribute to the appearance of BS symptoms. By applying different microscopic techniques (LM, SEM, TEM and EDS) we found a number of anatomical differences in both, rachis and pedicels, between H and BS symptomatic grapes, which include: (i) extended areas of collapsed cells and cell wall thickenings in the secondary phloem in BS samples; (ii) reduced number of cell layers in the cambium in BS samples; (iii) higher rate of callose deposition on sieve plates that are additionally covered with a carbohydrate-like material in BS samples; and (iv) reduced (up to 60%) estimated sieve tube conductivity in BS samples.

2.
Plant Sci ; 234: 38-49, 2015 May.
Article in English | MEDLINE | ID: mdl-25804808

ABSTRACT

Gall forming phylloxera may compete for nutrients with meristematic tissues and develop heterotrophic structures that act as carbon sinks. In this work, we studied the underlying starch metabolism, sink-source translocation of soluble sugars towards and within root galls. We demonstrated that nodosities store carbohydrates by starch accumulation and monitored the expression of genes involved in the starch metabolic. Thereby we proved that the nodosity is symplastically connected to the source tissues through its development and that the starch metabolism is significantly affected to synthesize and degrade starch within the gall. Genes required for starch biosynthesis and degradation are up-regulated. Among the carbohydrate transporters the expression of a glucose-6-phosphate translocater, one sucrose transporter and two SWEET proteins were increases, whereas hexose transporters, tonoplast monosaccharide transporter and Erd6-like sugar transporters were decreased. We found general evidence for plant response to osmotic stress in the nodosity as previously suggested for gall induction processes. We conclude that nodosities are heterogenous plant organs that accumulate starch to serve as temporary storage structure that is gradually withdrawn by phylloxera. Phylloxera transcriptionally reprograms gall tissues beyond primary metabolism and included downstream secondary processes, including response to osmotic stress.


Subject(s)
Gene Expression Regulation, Plant , Hemiptera/physiology , Host-Parasite Interactions , Vitis/parasitology , Animals , Carbohydrate Metabolism , Gene Expression Profiling , Hemiptera/ultrastructure , Oligonucleotide Array Sequence Analysis , Plant Roots/genetics , Plant Roots/metabolism , Plant Roots/parasitology , Plant Roots/ultrastructure , Plant Tumors/genetics , Plant Tumors/parasitology , Starch/metabolism , Vitis/genetics , Vitis/metabolism , Vitis/ultrastructure
SELECTION OF CITATIONS
SEARCH DETAIL
...