Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 109(8): 3047-52, 2012 Feb 21.
Article in English | MEDLINE | ID: mdl-22315403

ABSTRACT

ß-Arrestins (Arrb) participate in the regulation of multiple signaling pathways, including Wnt/ß-catenin, the major actor in human colorectal cancer initiation. To better understand the roles of Arrb in intestinal tumorigenesis, a reverse genetic approach (Arrb(-/-)) and in vivo siRNA treatment were used in Apc(Δ14/+) mice. Mice with Arrb2 depletion (knockout and siRNA) developed only 33% of the tumors detected in their Arrb2-WT littermates, whereas Arrb1 depletion remained without significant effect. These remaining tumors grow normally and are essentially Arrb2-independent. Unsupervised hierarchical clustering analysis showed that they clustered with 25% of Apc(Δ14/+);Arrb2(+/+) tumors. Genes overexpressed in this subset reflect a high interaction with the immune system, whereas those overexpressed in Arrb2-dependent tumors are predominantly involved in Wnt signaling, cell adhesion, migration, and extracellular matrix remodeling. The involvement of Arrb2 in intestinal tumor development via the regulation of the Wnt pathway is supported by ex vivo and in vitro experiments using either tumors from Apc(Δ14/+) mice or murine Apc(Min/+) cells. Indeed, Arrb2 siRNAs decreased the expression of Wnt target genes in cells isolated from 12 of 18 tumors from Apc(Δ14/+) mice. In Apc(Min/+) cells, Arrb2 siRNAs completely reversed the increased Wnt activity and colony formation in soft agar induced by Apc siRNA treatment, whereas they did not affect these parameters in basal conditions or in cells expressing constitutively active ß-catenin. We demonstrate that Arrb2 is essential for the initiation and growth of intestinal tumors displaying elevated Wnt pathway activity and identify a previously unsuspected molecular heterogeneity among tumors induced by truncating Apc mutations.


Subject(s)
Arrestins/metabolism , Intestinal Neoplasms/metabolism , Intestinal Neoplasms/pathology , Wnt Signaling Pathway , Adenomatous Polyposis Coli Protein/metabolism , Animals , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism , Cell Proliferation , Cell Separation , Cell Transformation, Neoplastic/pathology , Down-Regulation/genetics , Gene Expression Regulation, Neoplastic , Gene Knockdown Techniques , Humans , Intestinal Neoplasms/genetics , Mice , Mice, Inbred C57BL , Transcription Factor 4 , Tumor Stem Cell Assay , beta-Arrestin 1 , beta-Arrestin 2 , beta-Arrestins
2.
Mol Cancer Res ; 5(11): 1147-57, 2007 Nov.
Article in English | MEDLINE | ID: mdl-18025260

ABSTRACT

Chronic alcohol consumption is associated with increased risk of gastrointestinal cancer. High concentrations of ethanol trigger mucosal hyperregeneration, disrupt cell adhesion, and increase the sensitivity to carcinogens. Most of these effects are thought to be mediated by acetaldehyde, a genotoxic metabolite produced from ethanol by alcohol dehydrogenases. Here, we studied the role of low ethanol concentrations, more likely to mimic those found in the intestine in vivo, and used intestinal cells lacking alcohol dehydrogenase to identify the acetaldehyde-independent biological effects of ethanol. Under these conditions, ethanol did not stimulate the proliferation of nonconfluent cells, but significantly increased maximal cell density. Incorporation of phosphatidylethanol, produced from ethanol by phospholipase D, was instrumental to this effect. Phosphatidylethanol accumulation induced claudin-1 endocytosis and disrupted the claudin-1/ZO-1 association. The resulting nuclear translocation of ZONAB was shown to mediate the cell density increase in ethanol-treated cells. In vivo, incorporation of phosphatidylethanol and nuclear translocation of ZONAB correlated with increased proliferation in the colonic epithelium of ethanol-fed mice and in adenomas of chronic alcoholics. Our results show that phosphatidylethanol accumulation after chronic ethanol exposure disrupts signals that normally restrict proliferation in highly confluent intestinal cells, thus facilitating abnormal intestinal cell proliferation.


Subject(s)
Adenocarcinoma/chemically induced , CCAAT-Enhancer-Binding Proteins/metabolism , Colonic Neoplasms/chemically induced , Ethanol/toxicity , Glycerophospholipids/metabolism , Heat-Shock Proteins/metabolism , Intestines/drug effects , Intestines/pathology , Adenocarcinoma/metabolism , Alcohol Dehydrogenase/deficiency , Alcohol Dehydrogenase/genetics , Animals , CCAAT-Enhancer-Binding Proteins/genetics , Caco-2 Cells , Cell Count , Claudin-1 , Colonic Neoplasms/metabolism , Endocytosis , Heat-Shock Proteins/genetics , Humans , Hyperplasia/chemically induced , Membrane Proteins/metabolism , Mice , Phospholipase D/metabolism , Phosphoproteins/metabolism , Zonula Occludens-1 Protein
3.
Br J Pharmacol ; 147(8): 951-8, 2006 Apr.
Article in English | MEDLINE | ID: mdl-16491099

ABSTRACT

In cells overexpressing active MEKK1 to enhance c-Jun trans-activation, expression of rat cholecystokinin 1 receptor increased the activity of c-Jun while in the same experimental conditions overexpression of mouse cholecystokinin 1 receptor repressed it. This differential trans-activation is specific, since it was not observed for either the other overexpressed kinases (MEK, PKA) or for other transcription factors (ATF2, ELK-1, CREB). This differential behaviour was also detected in a human colon adenocarcinoma cell-line naturally producing high levels of endogenous MEKK1. This differential behaviour between the two receptors on the MEKK1-induced c-Jun trans-activation was independent of the activation state of JNK, of the phosphorylation level of c-Jun and of its ability to bind its specific DNA responsive elements. Two amino acids (Val43 and Phe50 in the mouse cholecystokinin 1 receptor, replaced by Leu43 and Ileu50 in the rat cholecystokinin 1 receptor) localized in the first transmembrane domain were found to play a crucial role in this differential behaviour. MEKK1 probably activates a transcriptional partner of c-Jun whose activity is maintained or increased in the presence of the rat cholecystokinin 1 receptor but repressed in the presence of the mouse cholecystokinin 1 receptor.


Subject(s)
JNK Mitogen-Activated Protein Kinases/metabolism , MAP Kinase Kinase Kinase 1/metabolism , Receptors, Cholecystokinin/metabolism , Transcriptional Activation/physiology , Amino Acid Sequence , Animals , Cell Line, Tumor , Enzyme Activation , Gene Expression Regulation, Enzymologic , Humans , JNK Mitogen-Activated Protein Kinases/genetics , Mice , Phosphorylation , Protein Binding , Protein Conformation , Protein Structure, Tertiary , Rats , Receptors, Cholecystokinin/genetics , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL