Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Environ Monit Assess ; 190(8): 490, 2018 Jul 27.
Article in English | MEDLINE | ID: mdl-30051272

ABSTRACT

Earlier studies by the authors on English soils under grassland strongly supported their hypothesis that soil/plant systems have naturally evolved to conserve nitrogen (N) by having a close match between the dynamics of mineral-N production in soils and the dynamics of plant N requirements. Thus, maximum mineral-N production in soils occurred in spring when plant N requirements were greatest and were very low in mid to late summer. Low temperature and a high C:N ratio of senescing material helped to conserve N in winter, but mobile N was associated with pollution inputs. We test the hypothesis that under the much more arid conditions of Pakistan, soil/plant systems naturally have evolved to conserve mineral-N, especially over the very dry and cooler months between October and February. When soils from a grassland site were incubated at ambient temperatures after removal of plant roots and exclusion of atmospheric N inputs, there was consistent evidence of immobilization of nitrate and immobilization and possibly volatilization of ammonia/ammonium. In the wetter months of July and August, the soil at 0-10 cm depth showed no evidence of significant ammonium-N production in July and only small ammonium production at 10-20 cm depth in August, but was associated with significant nitrate-N immobilization in August. Nitrate leaching only appeared likely towards the end of the rainy season in September. The results strongly suggest that, under grass, the retention of atmospheric N inputs over the long dry periods is regulating the pools of available N in the soils, rather than the N produced by mineralization of soil organic matter.


Subject(s)
Environmental Monitoring/methods , Nitrates/analysis , Nitrogen/analysis , Soil/chemistry , Grassland , Pakistan , Plants , Poaceae , Rain , Seasons
2.
Environ Monit Assess ; 188(5): 305, 2016 May.
Article in English | MEDLINE | ID: mdl-27102774

ABSTRACT

Since mean nitrate concentration along single river channels increases significantly with percent arable land use upstream of sampling points and autumn/early winter flushes in nitrate concentration are widespread, it is generally concluded that farmers contribute most of the nitrate. For the River Derwent in North Yorkshire, the correlation between nitrate concentration and percent arable land use is much poorer when tributary data are included in the equation, because of greater variations in dilution by water draining upland areas and in other N input sources. For the whole river system therefore, percent upland moorland/rough grazing land cover is an appreciably better predictor than percent arable land use for nitrate concentration. Upland land use encompasses the higher precipitation and runoff in such areas, and the subsequent greater dilution downstream of both arable land runoff and effluent from treatment works, as well as an inverse correlation to percent arable land use. This is strongly supported by the observation that, for the Derwent, Meteorological Office rainfall data alone proved even better than percent moorland rough grazing for predicting nitrate concentration. The dilution effect is therefore substantial but highly seasonal; lower runoff and dilution in summer offset the lower leaching losses from arable land, and higher dilution and runoff in winter offset greater nitrate leaching losses from arable soils. Because of this, coupled to improved efficiency of nitrogen fertilizer use, seasonality trends in nitrate concentrations that were pronounced a decade ago now have all but disappeared in the catchment.


Subject(s)
Environmental Monitoring , Nitrates/analysis , Rivers/chemistry , Water Pollutants, Chemical/analysis , England , Fresh Water , Nitrogen/analysis , Nitrogen Oxides , Seasons , Soil , Spatial Analysis , Water Pollution, Chemical/statistics & numerical data
3.
Sci Total Environ ; 497-498: 626-633, 2014 Nov 01.
Article in English | MEDLINE | ID: mdl-25170828

ABSTRACT

Water- and KCl-extractable ammonium-N and nitrate-N concentrations have been monitored at approximately monthly intervals over a year in soils from 0-10 and 10-20 cm depths under permanent grass at a sports field in York, UK. Measurements were made on both fresh, field-moist soils and after the same soils had been incubated for 7 days at ambient outdoor temperatures, to assess seasonal changes in the capacity of the soils to produce mineral-N species in the absence of plant uptake and other effects. Water extracts allowed potential mobility of N species to be assessed. Comparison of seasonal trends in mineral-N species concentrations in pre- and post-incubation soils confirmed depletion of exchangeable ammonium-N from the winter to summer. Mineral-N in fresh and incubated soils displayed summer minima and also low production in winter, associated with the effects of low temperature on nitrate production and probably microbial immobilization of nitrate produced by residual senescent plant litter with a higher C:N ratio from the previous autumn. The results support the concept that plant/soil systems co-evolved under more pristine conditions to conserve soil N by matching the dynamics of soil mineral N production and plant N uptake, but now N pollution has resulted in a dynamic mismatch.


Subject(s)
Environmental Monitoring , Nitrogen Cycle , Nitrogen/analysis , Ecosystem , Grassland , Soil/chemistry , Sports , United Kingdom
4.
Nanotoxicology ; 8(5): 583-92, 2014 Aug.
Article in English | MEDLINE | ID: mdl-23789836

ABSTRACT

Engineered nanoparticles (ENPs) will be released to the environment during use or following the disposal of ENP-containing products and concerns have been raised over the risks of ENPs to the environment. Many studies have explored the toxicity of ENPs to aquatic organisms but these studies have usually been performed with little understanding of the ENPs' behaviour in the test media and the relationship between behaviour in the media to behaviour in natural waters. This study evaluated and compared the aggregation behaviour of four model gold nanoparticle (NP) types (coated with neutral, negative, positive and amphoteric cappings) in standard ecotoxicity test media and natural waters. The effects of humic acid (HA) and test organisms on aggregation were also investigated. In standard media, positive and neutral NPs were stable, whereas amphoteric and negative NPs generally showed substantial aggregation. In natural waters, amphoteric NPs were generally found to be stable, neutral and positive NPs showed substantial aggregation while negative NPs were stable in some waters and unstable in others. HA addition stabilised the amphoteric NPs, destabilised the positive NPs and had no effect on stability of negative NPs. The presence of invertebrates generally lowered the degree of particle aggregation while macrophytes had no effect. Given the dramatically different behaviours of ENPs in various standard media and natural waters, current regulatory testing may either under- or overestimate the toxicity of nanomaterials to aquatic organisms. Therefore, there is a pressing need to employ ecotoxicity media which better represent the behaviour of ENPs in natural system.


Subject(s)
Metal Nanoparticles/toxicity , Toxicity Tests/standards , Water Pollutants, Chemical/toxicity , Amphipoda/drug effects , Analysis of Variance , Animals , Araceae/drug effects , Daphnia/drug effects , Environmental Monitoring , Gold/chemistry , Gold/toxicity , Humic Substances , Metal Nanoparticles/chemistry , Particle Size , Water Pollutants, Chemical/chemistry
5.
Environ Pollut ; 178: 128-34, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23562960

ABSTRACT

Summer minima and autumn/winter maxima in nitrate concentrations in rivers are reputedly due to high plant uptake of nitrate from soils in summer. A novel alternative hypothesis is tested here for soils under grass. By summer, residual readily mineralizable plant litter from the previous autumn/winter is negligible and fresh litter input low. Consequently little mineral-N is produced in the soil. Water-soluble and KCl-extractable mineral N in fresh soils and soils incubated outdoors for 7 days have been monitored over 12 months for soil transects at two permanent grassland sites near York, UK, using 6 replicates throughout. Vegetation-free soil is shown to produce very limited mineral-N in summer, despite the warm, moist conditions. Litter accumulates in autumn/winter and initially its high C:N ratio favours N accumulation in the soil. It is also shown that mineral-N generated monthly in situ in soil substantially exceeds the monthly mineral-N inputs via wet deposition at the sites.


Subject(s)
Environmental Monitoring , Fresh Water/chemistry , Groundwater/chemistry , Nitrogen/analysis , Poaceae/physiology , Soil Pollutants/analysis , Soil/chemistry , Geological Phenomena , Nitrogen Cycle , Seasons
6.
Sci Total Environ ; 408(4): 702-12, 2010 Jan 15.
Article in English | MEDLINE | ID: mdl-19945739

ABSTRACT

Long-term spatial and temporal variations in nitrate-N concentrations along the River Derwent have been examined using Environment Agency data to investigate the relative importance of impacts of atmospheric N deposition, land use, and changes in management. Where moorland and rough grazing dominate upstream of Forge Valley and Malton, over the 20 years since 1988 mean nitrate-N concentrations were initially increasing significantly, but are now levelling off, with peaks at ca. 4.5 mg Nl(-1). As expected in a catchment in a nitrate vulnerable zone (NVZ), more agricultural land use increases mean nitrate concentrations and the occurrence of distinct winter maxima, though the latter have become markedly less pronounced since 2001. It is suggested that this improvement is a combined effect of imposition of NVZ designation in the lower reaches in 2002, animal number declines associated with the Foot & Mouth outbreak in the region in 2001, and the impact of farmers' responses to increasing fertilizer prices and to beneficial pollutant mineral N inputs from the atmosphere. Minima in nitrate-N concentrations in summer have become much less pronounced over the past decade and are typically ca. 60% higher in concentration than a decade earlier. This probably is attributable to the effects of pollutant-N leaching to depths in soil below the rooting zone when near surface biotic uptake is low in winter. The resultant N mineralization in summer enhances summer nitrate leaching. The Derwent is a relatively clean river; however, its entire catchment was designated justifiably as a NVZ in January 2009, apparently based upon a projected 95 percentile nitrate-N concentration >11.29 mg l(-1) for 2010 based upon forward projection of data from 1990 to 2004 for Derwent Bridge. A survey of water quality in March 2009 showed that some agricultural areas are still making a significant contribution to the total nitrate level well downstream, at the point responsible for implementation of NVZ status. At 3 of the 29 sites sampled, nitrate concentration exceeded 60 mg l(-1).


Subject(s)
Environmental Monitoring/statistics & numerical data , Fresh Water/chemistry , Nitrates/analysis , Water Pollutants, Chemical/analysis , Water Pollution, Chemical/statistics & numerical data , Eutrophication , Rivers/chemistry , Seasons , Time Factors , United Kingdom
7.
Environ Pollut ; 157(4): 1287-93, 2009 Apr.
Article in English | MEDLINE | ID: mdl-19117647

ABSTRACT

The physico-chemical absorption characteristics of ammonium-N for 10 soils from 5 profiles in York, UK, show its high potential mobility in N deposition-impacted, unfertilized, permanent grassland soils. Substantial proportions of ammonium-N inputs were retained in the solution phase, indicating that ammonium translocation plays an important role in the N cycling in, and losses from, such soils. This conclusion was further supported by measuring the ammonium-N leaching from intact plant/soil microcosms. The ammonium-N absorption characteristics apparently varied with soil pH, depth and soil texture. It was concluded for the most acid soils especially that ammonium-N leached from litter horizons could be seriously limiting the capacity of underlying soils to retain ammonium. Contrary to common opinion, more attention therefore needs to be paid to ammonium leaching and its potential role in biogeochemical N cycling in semi-natural soil systems subject to atmospheric pollution.


Subject(s)
Nitrogen/analysis , Quaternary Ammonium Compounds/analysis , Soil Pollutants/analysis , Soil/analysis , Adsorption , Ecology/methods , Poaceae , Soil Microbiology , Water Pollution/analysis
8.
Environ Monit Assess ; 153(1-4): 435-48, 2009 Jun.
Article in English | MEDLINE | ID: mdl-18566904

ABSTRACT

Soils down slope of roads have been affected over decades by road salting in the UK uplands. Salt additions to fresh soil facilitate dispersal of organic matter so there is a potential risk of release of DON and DOC to nearby rivers where these run parallel to roads. Over time, however, salting enhances soil pH of naturally acid soils, and thus organic matter degradation through to CO2, thereby, lowering soil organic matter content. In addition any relatively labile organic matter may have already been dispersed. Thus, it is hypothesised that enhanced DOC mobilisation should only be a potential problem if soils not previously exposed to salt become heavily exposed in the future. This paper combines data from field observations and laboratory simulations to elucidate mechanisms controlling organic matter mobilisation processes to determine what controls spatial and temporal trends in DOC concentrations in soil solutions down slope of roads. Organic matter solubilisation is dependent on the degree of road salt exposure soils have had. The laboratory experiment provided evidence that there are two competing effects upon which solubilisation is dependent (a) pH suppression and (b) sodium dispersion. Other organic matter solubility models, if correct, link quite well with the authors "when it's gone, it's gone" hypothesis.


Subject(s)
Carbon/analysis , Soil Pollutants/analysis , Water Pollutants, Chemical/analysis , Carbon/chemistry , Environmental Monitoring , Geography , Soil Pollutants/chemistry , United Kingdom , Water Pollutants, Chemical/chemistry
9.
Sci Total Environ ; 400(1-3): 344-55, 2008 Aug 01.
Article in English | MEDLINE | ID: mdl-18678394

ABSTRACT

Although soil scientists and most environmental scientists are acutely aware of the interactions between the cycling of carbon and nitrogen, for conceptual convenience when portraying the nitrogen cycle in text books the N cycle tends to be considered in isolation from its interactions with the cycling of other elements and water, usually as a snap shot at the current time; the origins of dinitrogen are rarely considered, for example. The authors suggest that Lovelock's Gaia hypothesis provides a useful and stimulating framework for consideration of the terrestrial nitrogen cycle. If it is used, it suggests that urbanization and management of sewage, and intensive animal rearing are probably bigger global issues than nitrogen deposition from fossil fuel combustion, and that plant evolution may be driven by the requirement of locally sustainable and near optimal soil mineral N supply dynamics. This may, in turn, be partially regulating global carbon and oxygen cycles. It is suggested that pollutant N deposition may disrupt this essential natural plant and terrestrial ecosystem evolutionary process, causing biodiversity change. Interactions between the Earth and other bodies in the solar system, and possibly beyond, also need to be considered in the context of the global N cycle over geological time scales. This is because of direct potential impacts on the nitrogen content of the atmosphere, potential long-term impacts of past boloid collisions on plate tectonics and thus on global N cycling via subduction and volcanic emissions, and indirect effects upon C, O and water cycling that all may impact upon the N cycle in the long term.


Subject(s)
Models, Theoretical , Nitrogen/chemistry , Atmosphere/chemistry , Biodiversity , Earth, Planet , Ecosystem , Environmental Monitoring , Environmental Pollution , Time Factors , Water/chemistry
10.
Environ Pollut ; 156(3): 1075-82, 2008 Dec.
Article in English | MEDLINE | ID: mdl-18514372

ABSTRACT

Changes in the dynamics of inorganic N species transformations with depth have been investigated for seven soil profiles from a nitrogen-impacted ancient grassland on a nature reserve outside York in the UK, using incubation experiments. In five of the profiles, both ammonification and nitrification are occurring below the rooting zone, probably partly in response to the low C:N ratio in the soils. This contributes to elevated nitrate concentrations found in an adjacent stream. Accumulation of ammonium during incubation in the sub-soils of these five profiles suggests a high probability of ammonium leaching down the profiles as ammonium inputs and outputs at a given depth approach equilibrium. This ammonium may also be nitrified at depth. However, in the two profiles with the most acidic surface horizons, net mineralization was negligible or negative; some initial ammonium-N and ammonium-N produced during incubation were nitrified, so the loss in ammonium-N was closely balanced by nitrate-N production.


Subject(s)
Ammonia/chemistry , Nitrates/chemistry , Nitrogen/analysis , Poaceae , Soil Pollutants/analysis , Soil/analysis , Adsorption , Aluminum Silicates , Ammonia/analysis , Biodegradation, Environmental , Carbon/analysis , Clay , Climate , England , Hydrogen-Ion Concentration , Nitrates/analysis , Rain , Silicon Dioxide
11.
Environ Pollut ; 152(1): 20-31, 2008 Mar.
Article in English | MEDLINE | ID: mdl-17640786

ABSTRACT

Of several impacts of road salting on roadside soils, the potential disruption of the nitrogen cycle has been largely ignored. Therefore the fates of low-level ammonium-N and nitrate-N inputs to roadside soils impacted by salting over an extended period (decades) in the field have been studied. The use of road salts disrupts the proportional contributions of nitrate-N and ammonium-N to the mineral inorganic fraction of roadside soils. It is highly probable that the degree of salt exposure of the soil, in the longer term, controls the rates of key microbial N transformation processes, primarily by increasing soil pH. Additional influxes of ammonium-N to salt-impacted soils are rapidly nitrified therefore and, thereafter, increased leaching of nitrate-N to the local waterways occurs, which has particular relevance to the Water Framework Directive. The results reported are important when assessing the fate of inputs of ammonia to soils from atmospheric pollution.


Subject(s)
Nitrogen/chemistry , Sodium Chloride/analysis , Soil Pollutants/analysis , Ammonia/analysis , Automobiles , England , Environmental Monitoring/methods , Hydrogen-Ion Concentration , Nitrates/analysis , Nitrogen/analysis , Soil/analysis , Time , Water Pollutants, Chemical/analysis
12.
Sci Total Environ ; 373(1): 1-12, 2007 Feb 01.
Article in English | MEDLINE | ID: mdl-17188337

ABSTRACT

The tidal Ouse forms a significant part of the Humber river system in Eastern England, which provides the largest UK fresh water source to the North Sea and a valuable habitat for fish. However it suffers from dissolved oxygen (DO) sag in summer, exacerbated by the industrial effluent discharged at Selby. A one-dimensional water quality model, QUESTS1D, as utilized by the Environment Agency (EA) has been used to evaluate the effectiveness of management options based on exploiting spatial distribution of the assimilative capacity of the river as an alternative to implementing more stringent effluent consents. Significant improvements in water quality of the tidal Ouse are predicted compared to the effects of tightening effluent consents. A system of water quality functions is derived in this paper for quicker and more direct predictions of water quality, which will be useful in future research when combined with other analyses. Taking account the assimilative capacity in policy making, this paper suggests that a combined water management framework should be applied to ensure the required water quality.


Subject(s)
Models, Theoretical , Rivers , Water Pollution/prevention & control , England , Oxygen/analysis , Water Movements
13.
J Environ Monit ; 8(4): 439-44, 2006 Apr.
Article in English | MEDLINE | ID: mdl-16604233

ABSTRACT

Enhanced soil element concentrations may serve as indicators not only of modern pollution, but also of former historic and/or pre-historic human activity. However, there is little consensus over the most appropriate means of extraction for identifying chemical signatures of modern and archaeological pollution. This study addressed this question by using a 5-step sequential extraction to examine the partitioning of elements within the soil. Samples were taken from known functional areas (hearth, house, byre, arable, and grazing areas) on a 19th century abandoned croft (small farm). A hot nitric acid digest and five-stage sequential extraction method were used to examine the partitioning of elements in soil and identify the current elemental distribution of anthropogenic contamination. The results indicate that although a significant proportion of Ca tends to be bound with exchangeable and weak acid soluble fractions, in the hearth and house areas there is also a significant proportion held within the recalcitrant residue. Pb concentrations tend to be associated with organic matter, ammonium oxalate extractable fractions and the residue, whilst Zn generally has a more even partitioning between the six soil fractions. The implications of this for extraction methodology are element and soil specific. However, the presence of a significant proportion of anthropogenically significant elements (including Ca, Pb, Zn, Sr, and Ba) within the resistant residue suggests the use of only a weak acid or an exchangeable fraction extraction would result in the loss of information from contamination resulting from former human activity. Hence, a total or pseudo-total extraction method is recommended for this type of study.


Subject(s)
Agriculture , Soil Pollutants/analysis , Soil/analysis
14.
Environ Pollut ; 143(2): 361-6, 2006 Sep.
Article in English | MEDLINE | ID: mdl-16406625

ABSTRACT

Monthly stream water calcium and Gran alkalinity concentration data from 11 sub-catchments of the Nether Beck in the English Lake District have been used to appraise the transferability of the Scottish, River Dee-based G-BASH model. Readily available riparian zone geochemistry and flow paths were used initially to predict minimum and mean stream water concentrations at the Nether Beck, based on calibration equations from the River Dee catchment data. Predicted values significantly exceeded observed values. Differences in runoff between the two areas, leading to a dilution effect in the Nether Beck, explained most of the difference between observed and predicted values. Greater acid deposition in the Lake District also reduced stream water Gran alkalinity concentrations in that area. If regional differences in precipitation, evapotranspiration and pollutant deposition are incorporated into the model, it may then be used reliably to predict catchment susceptibility to acidification over a wide regional (national) scale.


Subject(s)
Calcium/analysis , Environmental Pollution/analysis , Models, Theoretical , Water Pollutants, Chemical/analysis , Acid Rain , Chemical Precipitation , Data Collection , England , Geographic Information Systems , Geologic Sediments , Hydrogen-Ion Concentration , Rivers , Scotland , Soil
15.
Environ Pollut ; 136(1): 63-70, 2005 Jul.
Article in English | MEDLINE | ID: mdl-15809108

ABSTRACT

Monthly data for 11 moorland streams displaying marked seasonality and spatial variation in nitrate concentrations have been used with readily available catchment characteristics to develop a method for predicting stream water nitrate concentrations throughout an upland river network in the Lake District, UK. Over a 12-month period, a simple asymmetric truncated cosine function of day number is used to describe seasonality effects on stream water nitrate concentrations. This is then adjusted to compensate for differences in seasonality effects with catchment elevation. Occurrence of greater proportions of steeper slopes (>20 degrees -40 degrees ) in individual catchments facilitated nitrate leaching, as did increased extent of occurrence of outcropping rocks. It is shown that the spatial and temporal variation in nitrate concentration through the river network studied may therefore be effectively represented by an equation which is a function of day number, % outcropping rock and % of catchment area with a >20 degrees -40 degrees slope.


Subject(s)
Environmental Monitoring/methods , Nitrates/analysis , Rivers , Seasons , Water Pollutants, Chemical/analysis , Environmental Pollutants , Geological Phenomena , Geology , Models, Theoretical , Nitrogen , United Kingdom , Water Movements
16.
Environ Sci Technol ; 36(5): 962-8, 2002 Mar 01.
Article in English | MEDLINE | ID: mdl-11918027

ABSTRACT

The use of arsenic (As) contaminated groundwater for irrigation of crops has resulted in elevated concentrations of arsenic in agricultural soils in Bangladesh, West Bengal (India), and elsewhere. Paddy rice (Oryza sativa L.) is the main agricultural crop grown in the arsenic-affected areas of Bangladesh. There is, therefore, concern regarding accumulation of arsenic in rice grown those soils. A greenhouse study was conducted to examine the effects of arsenic-contaminated irrigation water on the growth of rice and uptake and speciation of arsenic. Treatments of the greenhouse experiment consisted of two phosphate doses and seven different arsenate concentrations ranging from 0 to 8 mg of As L(-1) applied regularly throughout the 170-day post-transplantation growing period until plants were ready for harvesting. Increasing the concentration of arsenate in irrigation water significantly decreased plant height, grain yield, the number of filled grains, grain weight, and root biomass, while the arsenic concentrations in root, straw, and rice husk increased significantly. Concentrations of arsenic in rice grain did not exceed the food hygiene concentration limit (1.0 mg of As kg(-1) dry weight). The concentrations of arsenic in rice straw (up to 91.8 mg kg(-1) for the highest As treatment) were of the same order of magnitude as root arsenic concentrations (up to 107.5 mg kg(-1)), suggesting that arsenic can be readily translocated to the shoot. While not covered by food hygiene regulations, rice straw is used as cattle feed in many countries including Bangladesh. The high arsenic concentrations may have the potential for adverse health effects on the cattle and an increase of arsenic exposure in humans via the plant-animal-human pathway. Arsenic concentrations in rice plant parts except husk were not affected by application of phosphate. As the concentration of arsenic in the rice grain was low, arsenic speciation was performed only on rice straw to predict the risk associated with feeding contaminated straw to the cattle. Speciation of arsenic in tissues (using HPLC-ICP-MS) revealed that the predominant species present in straw was arsenate followed by arsenite and dimethylarsinic acid (DMAA). As DMAA is only present at low concentrations, it is unlikely this will greatly alter the toxicity of arsenic present in rice.


Subject(s)
Arsenic/pharmacokinetics , Oryza/physiology , Soil Pollutants/pharmacokinetics , Water Pollutants/pharmacokinetics , Arsenic/metabolism , Biomass , Environmental Monitoring , Food Contamination , Plant Roots/chemistry , Plant Roots/physiology , Soil Pollutants/metabolism , Tissue Distribution , Water Pollutants/metabolism , Water Supply
SELECTION OF CITATIONS
SEARCH DETAIL
...