Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 12(1): 7830, 2022 05 12.
Article in English | MEDLINE | ID: mdl-35550557

ABSTRACT

Human teeth are mechanically robust through a complex structural composite organisation of materials and morphology. Efforts to replicate mechanical function in artificial teeth (typodont teeth), such as in dental training applications, attempt to replicate the structure and morphology of real teeth but lack tactile similarities during mechanical cutting of the teeth. In this study, biomimetic typodont teeth, with morphology derived from X-ray microtomography scans of extracted teeth, were 3D printed using an approach to develop novel composites. These composites with a range of glass, hydroxyapatite and porcelain reinforcements within a methacrylate-based photopolymer resin were compared to six commercial artificial typodont teeth. Mechanical performance of the extracted human teeth and 3D printed typodont teeth were evaluated using a haptic approach of measuring applied cutting forces. Results indicate 3D printed typodont teeth replicating enamel and dentine can be mechanically comparable to extracted human teeth despite the material compositions differing from the materials found in human teeth. A multiple parameter variable of material elastic modulus and hardness is shown to describe the haptic response when cutting through both human and biomimetic, highlighting a critical dependence between the ratio of material mechanical properties and not absolute material properties in determining tooth mechanical performance under the action of cutting forces.


Subject(s)
Biomimetics , Tooth , Composite Resins/chemistry , Durapatite , Humans , Materials Testing , Printing, Three-Dimensional , Tooth/diagnostic imaging , X-Ray Microtomography
2.
J Microsc ; 272(3): 207-212, 2018 12.
Article in English | MEDLINE | ID: mdl-29953620

ABSTRACT

Artificial teeth have several advantages in preclinical training. The aim of this study is to three-dimensionally (3D) print accurate artificial teeth using scans from X-ray microtomography (XMT). Extracted and artificial teeth were imaged at 90 kV and 40 kV, respectively, to create detailed high contrast scans. The dataset was visualised to produce internal and external meshes subsequently exported to 3D modelling software for modification before finally sending to a slicing program for printing. After appropriate parameter setting, the printer deposited material in specific locations layer by layer, to create a 3D physical model. Scans were manipulated to ensure a clean model was imported into the slicing software, where layer height replicated the high spatial resolution that was observed in the XMT scans. The model was then printed in two different materials (polylactic acid and thermoplastic elastomer). A multimaterial print was created to show the different physical characteristics between enamel and dentine. LAY DESCRIPTION: Objectives Trainee dentists practice procedures using artificial teeth that are far from real teeth. Using x-rays and 3D printing technology the project will recreate a real tooth, artificially. Methods X-rays produce a 3D image that can be printed out as a physical replica, after several conversions of files. Different settings can be used to allow the printed model, to be as accurate as possible. Data were collected on the forces from a dental drill on a tooth's surface, to measure hardness and resistance. Results Multiple teeth replicas were printed with a high accuracy. The materials printed did not mimic actual tooth properties, but using the data from real teeth, materials can be tested in future.


Subject(s)
Imaging, Three-Dimensional , Printing, Three-Dimensional , Tooth, Artificial , X-Ray Microtomography , Humans , Software
SELECTION OF CITATIONS
SEARCH DETAIL
...