Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Article in English | MEDLINE | ID: mdl-38738312

ABSTRACT

During the process of decidualization, the stromal cells of the endometrium change dynamically to create a favorable environment for embryo implantation. Lysosome activity has often been associated with physiological changes in the endometrium during the pre-implantation period and early pregnancy. In this study, the effect of para-nonylphenol (p-NP), an endocrine disruptor, on human immortalized endometrial stromal cells (tHESCs) was investigated. After exposure to p-NP (1 nM and 1 pM), the cells were examined for the decidualization markers Connexin-43, insulin like growth factor binding protein 1 (IGFBP1) and Prolactin. In addition, the effect of p-NP on lysosome biogenesis and exocytosis was investigated by examining the expression and localization of the transcription factor EB (TFEB) and that of the lysosomal-associated membrane protein 1 (LAMP-1). Finally, we evaluated the effect of p-NP on ECM remodeling using a fibronectin assay. Our results showed that p-NP reduced the expression of Prolactin protein, increased the nuclear localization of TFEB, and induced the increase and translocation of the lysosomal protein LAMP-1 to the membrane of tHESCs. The data indicate an impairment of decidualization and suggest an increase in lysosomal biogenesis and exocytosis, which is supported by the higher release of active cathepsin D by tHESCs. Given the importance of cathepsins in the processing and degradation of the ECM during trophoblast invasiveness and migration into the decidua, our results appear to be clear evidence of the negative effects of p-NP on endometrial processes that are fundamental to reproductive success and the establishment of pregnancy.

2.
Int J Mol Sci ; 25(9)2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38732089

ABSTRACT

Antimicrobial peptides (AMPs) are molecules with an amphipathic structure that enables them to interact with bacterial membranes. This interaction can lead to membrane crossing and disruption with pore formation, culminating in cell death. They are produced naturally in various organisms, including humans, animals, plants and microorganisms. In higher animals, they are part of the innate immune system, where they counteract infection by bacteria, fungi, viruses and parasites. AMPs can also be designed de novo by bioinformatic approaches or selected from combinatorial libraries, and then produced by chemical or recombinant procedures. Since their discovery, AMPs have aroused interest as potential antibiotics, although few have reached the market due to stability limits or toxicity. Here, we describe the development phase and a number of clinical trials of antimicrobial peptides. We also provide an update on AMPs in the pharmaceutical industry and an overall view of their therapeutic market. Modifications to peptide structures to improve stability in vivo and bioavailability are also described.


Subject(s)
Antimicrobial Peptides , Humans , Animals , Antimicrobial Peptides/chemistry , Antimicrobial Peptides/pharmacology , Clinical Trials as Topic , Antimicrobial Cationic Peptides/chemistry , Antimicrobial Cationic Peptides/pharmacology
3.
Int J Mol Sci ; 24(9)2023 Apr 27.
Article in English | MEDLINE | ID: mdl-37175674

ABSTRACT

SET-M33 is a synthetic peptide that is being developed as a new antibiotic against major Gram-negative bacteria. Here we report two in vivo studies to assess the toxicity and efficacy of the peptide in a murine model of pulmonary inflammation. First, we present the toxicity study in which SET-M33 was administered to CD-1 mice by snout inhalation exposure for 1 h/day for 7 days at doses of 5 and 20 mg/kg/day. The results showed adverse clinical signs and effects on body weight at the higher dose, as well as some treatment-related histopathology findings (lungs and bronchi, nose/turbinates, larynx and tracheal bifurcation). On this basis, the no observable adverse effect level (NOAEL) was considered to be 5 mg/kg/day. We then report an efficacy study of the peptide in an endotoxin (LPS)-induced pulmonary inflammation model. Intratracheal administration of SET-M33 at 0.5, 2 and 5 mg/kg significantly inhibited BAL neutrophil cell counts after an LPS challenge. A significant reduction in pro-inflammatory cytokines, KC, MIP-1α, IP-10, MCP-1 and TNF-α was also recorded after SET-M33 administration.


Subject(s)
Endotoxins , Pneumonia , Mice , Animals , Endotoxins/toxicity , Antimicrobial Peptides , Lipopolysaccharides/toxicity , Pneumonia/chemically induced , Pneumonia/drug therapy , Cytokines , Peptides , Inflammation/drug therapy , Bronchoalveolar Lavage Fluid
4.
Sci Rep ; 12(1): 19294, 2022 11 11.
Article in English | MEDLINE | ID: mdl-36369523

ABSTRACT

The antimicrobial peptide SET-M33 is under study for the development of a new antibiotic against major Gram-negative pathogens. Here we report the toxicological evaluation of SET-M33 administered intravenously to rats and dogs. Dose range finding experiments determined the doses to use in toxicokinetic evaluation, clinical biochemistry analysis, necroscopy and in neurological and respiratory measurements. Clinical laboratory investigations in dogs and rats showed a dose-related increase in creatinine and urea levels, indicating that the kidneys are the target organ. This was also confirmed by necroscopy studies of animal tissues, where signs of degeneration and regeneration were found in kidney when SET-M33 was administered at the highest doses in the two animal species. Neurological toxicity measurements by the Irwin method and respiratory function evaluation in rats did not reveal any toxic effect even at the highest dose. Finally, repeated administration of SET-M33 by short infusion in dogs revealed a no-observed-adverse-effect-level of 0.5 mg/kg/day.


Subject(s)
Anti-Infective Agents , Antimicrobial Peptides , Rats , Dogs , Animals , Microbial Sensitivity Tests , Anti-Bacterial Agents/toxicity , Anti-Infective Agents/toxicity , Peptides , Dose-Response Relationship, Drug
5.
Pharmaceutics ; 14(11)2022 Oct 26.
Article in English | MEDLINE | ID: mdl-36365116

ABSTRACT

In recent years, we have discovered Esc(1-21) and its diastereomer (Esc peptides) as valuable candidates for the treatment of Pseudomonas lung infection, especially in patients with cystic fibrosis (CF). Furthermore, engineered poly(lactide-co-glycolide) (PLGA) nanoparticles (NPs) were revealed to be a promising pulmonary delivery system of antimicrobial peptides. However, the "ad hoc" development of novel therapeutics requires consideration of their stability, tolerability, and safety. Hence, by means of electrophysiology experiments and preclinical studies on healthy mice, we demonstrated that neither Esc peptides or Esc-peptide-loaded PLGA NPs significantly affect the integrity of the lung epithelium, nor change the global gene expression profile of lungs of treated animals compared to those of vehicle-treated animals. Noteworthy, the Esc diastereomer endowed with the highest antimicrobial activity did not provoke any pulmonary pro-inflammatory response, even at a concentration 15-fold higher than the efficacy dosage 24 h after administration in the free or encapsulated form. The therapeutic index was ≥70, and the peptide was found to remain available in the bronchoalveolar lavage of mice, after two days of incubation. Overall, these studies should open an avenue for a new up-and-coming pharmacological approach, likely based on inhalable peptide-loaded NPs, to address CF lung disease.

6.
Cells ; 11(20)2022 10 11.
Article in English | MEDLINE | ID: mdl-36291063

ABSTRACT

Dietary exposure to Bisphenol A (BPA), an industrial chemical present in food containers, affects nutrient metabolism in the myocardium of offspring during intrauterine life. Using a murine model, we observed that fetal hearts from mothers exposed to BPA (2.5 µg/kg/day) for 20 days before mating and for all of the gestation had decreased expression of glucose transporter-1 (GLUT1), the principal sugar transporter in the fetal heart, and increased expression of fatty acid cluster of differentiation 36 transporter (CD36), compared to control fetuses from vehicle-treated mothers. We confirmed the suppression of GLUT1 by exposing fetal heart organotypic cultures to BPA (1 nM) for 48 h but did not detect changes in CD36 compared to controls. During pregnancy, the placenta continuously releases extracellular vesicles such as exosomes into fetal circulation. These vesicles influence the growth and development of fetal organs. When fetal heart cultures were treated with cord blood-derived exosomes isolated from BPA-fed animals, GLUT1 expression was increased by approximately 40%. Based on our results, we speculate that exosomes from cord blood, in particular placenta-derived nanovesicles, could contribute to the stabilization of the fetal heart metabolism by ameliorating the harmful effects of BPA on GLUT1 expression.


Subject(s)
Benzhydryl Compounds , Exosomes , Fetal Blood , Glucose Transporter Type 1 , Myocardium , Phenols , Animals , Female , Pregnancy , Rats , Exosomes/drug effects , Exosomes/metabolism , Fatty Acids/metabolism , Fetal Blood/drug effects , Fetal Blood/metabolism , Fetus/metabolism , Glucose Transporter Type 1/metabolism , Myocardium/metabolism , Benzhydryl Compounds/adverse effects , Phenols/adverse effects , Diet
7.
Pharmaceutics ; 15(1)2022 Dec 20.
Article in English | MEDLINE | ID: mdl-36678633

ABSTRACT

Development of inhalable formulations for delivering peptides to the conductive airways and shielding their interactions with airway barriers, thus enhancing peptide/bacteria interactions, is an important part of peptide-based drug development for lung applications. Here, we report the construction of a biocompatible nanosystem where the antimicrobial peptide SET-M33 is encapsulated within polymeric nanoparticles of poly(lactide-co-glycolide) (PLGA) conjugated with polyethylene glycol (PEG). This system was conceived for better delivery of the peptide to the lungs by aerosol. The encapsulated peptide showed prolonged antibacterial activity, due to its controlled release, and much lower toxicity than the free molecule. The peptide-based nanosystem killed Pseudomonas aeruginosa in planktonic and sessile forms in a dose-dependent manner, remaining active up to 72 h after application. The encapsulated peptide showed no cytotoxicity when incubated with human bronchial epithelial cells from healthy individuals and from cystic fibrosis patients, unlike the free peptide, which showed an EC50 of about 22 µM. In vivo acute toxicity studies in experimental animals showed that the peptide nanosystem did not cause any appreciable side effects, and confirmed its ability to mitigate the toxic and lethal effects of free SET-M33.

8.
Tissue Cell ; 73: 101630, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34454366

ABSTRACT

During pregnancy, both the maternal endometrium and the blastocyst have highly glycosylated proteins with glycosylations controlled in a specific manner. Carbohydrates play a fundamental role in cell-cell and cell-matrix recognition and are involved in defining the structure and integrity of tissues. The uterus' secretions, which are rich in glycoproteins and glycogen and the presence of a functional glycocalyx on the uterine epithelium, establish a favourable milieu, which is essential for the correct implantation and subsequent development of the blastocyst. Likewise, carbohydrate residues such as fucose and sialic acid present at the placental level are determinant in creating an immuno-environment, which supports the mother's tolerance towards the fetal antigens. In this review, we explore the literature concerning the role of important glycan-epitopes at the feto-maternal interface in the human species. Moreover, we also show some unpublished interesting results on changes of glycan residues in human placenta tissues from the first trimester of pregnancy.


Subject(s)
Maternal-Fetal Exchange , Polysaccharides/metabolism , Endometrium/metabolism , Female , Glycosylation , Humans , Lectins/metabolism , Placenta/metabolism , Polysaccharides/chemistry , Pregnancy
9.
Antibiotics (Basel) ; 9(12)2020 Nov 24.
Article in English | MEDLINE | ID: mdl-33255172

ABSTRACT

The peptide SET-M33 is a molecule synthesized in tetra-branched form which is being developed as a new antibiotic against Gram-negative bacteria. Its isomeric form with D amino acids instead of the L version (SET-M33D) is also able to kill Gram-positive bacteria because of its higher resistance to bacterial proteases (Falciani et al., PLoS ONE, 2012, 7, e46259). Here we report the strong in vitro activity of SET-M33D (MIC range 0.7-6.0 µM) against multiresistant pathogens of clinical interest, including Gram-positives Staphylococcus aureus, Staphylococcus saprophyticus, and Enterococcus faecalis, and various Gram-negative enterobacteriaceae. SET-M33D antibacterial activity is also confirmed in vivo against a MRSA strain of S. aureus with doses perfectly compatible with clinical use (5 and 2.5 mg/Kg). Moreover, SET-M33D strongly neutralized lipopolysaccharide (LPS) and lipoteichoic acid (LTA), thus exerting a strong anti-inflammatory effect, reducing expression of cytokines, enzymes, and transcription factors (TNF-α, IL6, COX-2, KC, MIP-1, IP10, iNOS, NF-κB) involved in the onset and evolution of the inflammatory process. These results, along with in vitro and in vivo toxicity data and the low frequency of resistance selection reported here, make SET-M33D a strong candidate for the development of a new broad spectrum antibiotic.

10.
Biofactors ; 45(6): 920-929, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31408224

ABSTRACT

Rottlerin is a cytostatic and cytotoxic drug in a variety of cancer cells. Our previous experience demonstrated that depending upon the genetic/biochemical background of cancer cells, rottlerin is able to induce both apoptotic and autophagic cell death, or dramatically disturb protein homeostasis leading to lethal cellular atrophy. In the current study, we investigated the cytotoxic effects and mechanisms of rottlerin against human amelanotic A375 melanoma cells. In this cell line, rottlerin exhibits its main and newest cytotoxic properties, that is, growth arrest, apoptosis induction, and translation shutoff. In fact, the drug, time-, and dose-dependently, markedly inhibited cell proliferation through cyclin D1 downregulation and induced apoptotic cell death as early as after 18 h treatment. Mechanistically, rottlerin triggered apoptosis by both intrinsic and extrinsic pathways. Both pathways are likely activated by the downregulation of the antiapoptotic B-cell lymphoma 2 (Bcl-2) protein, which simultaneously affects mitochondrial and endoplasmic reticulum (ER) membranes stability. Concomitantly to extrinsic apoptosis induction, the rottlerin-activated ER stress/eukaryotic initiation factor 2 (eIF2) α axis blocked the translational apparatus. The altered proteostasis precluded the complete cells' rescue from death in the presence of apoptosis inhibitors.


Subject(s)
Acetophenones/pharmacology , Benzopyrans/pharmacology , Cell Proliferation/drug effects , Cyclin D1/genetics , Melanoma/drug therapy , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Cell Line, Tumor , Endoplasmic Reticulum/drug effects , Endoplasmic Reticulum Stress/drug effects , Gene Expression Regulation, Neoplastic/drug effects , Humans , Melanoma/genetics , Melanoma/pathology , Mitochondria/drug effects , Mitochondria/genetics , Reactive Oxygen Species/metabolism , Signal Transduction/drug effects
11.
Sci Rep ; 7(1): 1279, 2017 04 28.
Article in English | MEDLINE | ID: mdl-28455500

ABSTRACT

Autophagy is a crucial and physiological process for cell survival from yeast to mammals, including protozoan parasites. Toxoplasma gondii, an intracellular parasite, typically exploits autophagic machinery of host cell; however host cell upregulates autophagy to combat the infection. Herein we tested the efficacy of Rottlerin, a natural polyphenol with autophagic promoting properties, against Toxoplasma infection on the chorioncarcinoma-derived cell line BeWo. We found that Rottlerin, at sub-toxic doses, induced morphological and biochemical alterations associated with autophagy and decreased Toxoplasma growth in infected cells. Although autophagy was synergically promoted by Toxoplasma infection in combination with Rottlerin treatment, the use of the autophagy inhibitor chloroquine revealed that Rottlerin anti-parasitic effect was largely autophagy-independent and likely mediated by the converging inhibitory effect of Rottlerin and Toxoplasma in host protein translation, mediated by mTOR inhibition and eIF2α phosphorylation. Both events, which on one hand could explain the additive effect on autophagy induction, on the other hand led to inhibition of protein synthesis, thereby depriving Toxoplasma of metabolically essential components for multiplication. We suggest that modulation of the competition between pathogen requirement and host cell defense might be an attractive, novel therapeutic approach against Toxoplasma infection and encourage the development of Rottlerin-based new therapeutic formulations.


Subject(s)
Acetophenones/pharmacology , Antiprotozoal Agents/pharmacology , Benzopyrans/pharmacology , Toxoplasma/drug effects , Toxoplasma/growth & development , Trophoblasts/parasitology , Autophagy/drug effects , Cell Line , Humans , Protein Biosynthesis/drug effects
12.
J Insect Physiol ; 51(7): 749-57, 2005 Jul.
Article in English | MEDLINE | ID: mdl-16105552

ABSTRACT

Modifications of the pollen grains of Pyrus communis Linneaus that occur during the digestion by Osmia cornuta (Latreille) larvae were studied histochemically. We compared the features of the pollen grains found in the anthers, in the larval cell provisions and in the alimentary canal of the 5th instar larvae. Modifications were already evident in the provisions and consisted of protoplast protrusions through the apertures and a decrease in the number of starch-containing pollen grains. After pollen grains were ingested by the larvae, the protoplast appeared retracted from the pollen wall. Pollen digestion began in the anterior part of the midgut, where we observed: (1) disorganised intine at the apertures; (2) disappearance of DAPI staining of nuclear pollen DNA; (3) fewer pollen grains containing starch than in the anthers; (4) some empty pollen grains. Pollen grains in the proctodeum appeared extremely compressed and crushed. Some grains appeared to be unaffected by the digestive process. We hypothesise that the protrusion of the intine and of the protoplast from the apertures in bee provisions could be considered a kind of pre-treatment necessary to initiate the digestion process in the larval alimentary canal.


Subject(s)
Bees/physiology , Digestion/physiology , Pollen/metabolism , Pyrus , Animals , Flowers/cytology , Histocytochemistry , Larva/physiology , Pollen/cytology
SELECTION OF CITATIONS
SEARCH DETAIL
...