Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
Materials (Basel) ; 16(4)2023 Feb 15.
Article in English | MEDLINE | ID: mdl-36837246

ABSTRACT

The purpose of this work was to develop, characterize and test new low-cost materials suitable for removing methylene blue dye from water and wastewater by adsorption. The solid materials consisted of silica gel powder (SG), silica gel mixed with eggshell powder (SG-ES) and a mixture of silica gel with sand from the western Iraqi desert (SG-SI). The samples were milled by using an electrical mixer and a ball mill, followed by a drying step. In addition, desert sand was acid-treated in order to remove impurities. The structure and chemical composition of the samples were investigated by X-ray diffraction (XRD), a scanning electron microscopy technique equipped with an energy-dispersive X-ray spectrometer (SEM-EDX), a low-temperature nitrogen adsorption (BET) technique, thermo-analytical (TG/TGA) measurements and Fourier-transformed infrared spectroscopy (FTIR). The previously mentioned materials were tested to remove methylene blue from an aqueous solution. The adsorption experiments were monitored by ultraviolet-visible (UV-Vis) spectrophotometry and showed that SG and SG-ES gave promising results for the methylene blue removal from water. After 40 min of treatment of the aqueous solution containing 10 mg/L of MB at room temperature, the tested SG, SG-ES and SG-SI materials were found to have 86%, 80% and 57% dye adsorption efficiency, respectively. Taking into consideration not only the adsorption activity of the studied material but their availability, cost and concepts of cleaner production and waste minimization, the developed silica gel with eggshell can be considered as a good, cost-effective alternative to commercially available activated-carbon-based adsorbents. Different kinetic and isotherm models were fitted to the experimental results. A pseudo-second-kinetics-order model revealed high correlation fitting, while the Freundlich model was found to appropriately describe the adsorption isotherm. The thermal stability during the possible regeneration process of the SG-ES adsorbent mixture and its interaction mechanism with cationic dye was discussed.

2.
Environ Res ; 214(Pt 2): 113890, 2022 11.
Article in English | MEDLINE | ID: mdl-35870500

ABSTRACT

Considerable amounts of domestic and industrial wastewater that should be treated before reuse are discharged into the environment annually. Electrocoagulation is an electrochemical technology in which electrical current is conducted through electrodes, it is mainly used to remove several types of wastewater pollutants, such as dyes, toxic materials, oil content, chemical oxygen demand, and salinity, individually or in combination with other processes. Electrocoagulation technology used in hybrid systems along with other technologies for wastewater treatment are reviewed in this work, and the articles reviewed herein were published from 2018 to 2021. Electrocoagulation is widely employed in integrated systems with other electrochemical technologies or conventional methods for effective removal of different pollutants with less cost and sometimes over shorter durations of operation. It has also been observed that the hybrid effects besides increasing the removal efficiency can overcome the disadvantages of using electrocoagulation alone, such as less sludge formation, high cost of operation and increased life of the used electrodes, and stable flux of water with longer periods of operation. More than 20 types of other technologies have been combined efficiently with electrocoagulation.


Subject(s)
Environmental Pollutants , Water Pollutants, Chemical , Water Purification , Electrocoagulation/methods , Industrial Waste/analysis , Technology , Waste Disposal, Fluid/methods , Wastewater/chemistry , Water Pollutants, Chemical/chemistry
3.
Materials (Basel) ; 15(8)2022 Apr 11.
Article in English | MEDLINE | ID: mdl-35454495

ABSTRACT

The nontoxicity, worldwide availability and low production cost of cuttlefish bone products qualify them an excellent biocoagulant to treat food industry wastewater. In this study, cuttlefish bone liquid waste from the deproteinization step was used as a biocoagulant to treat food industry wastewater. This work concerns a waste that has never before been investigated. The objectives of this work were: the recovery of waste resulting from cuttlefish bone deproteinization, the replacementof chemical coagulants with natural ones to preserve the environment, and the enhancement ofthe value of fishery byproducts. A quantitative characterization of the industrial effluents of a Moroccan food processing plant was performed. The physicochemical properties of the raw cuttlefish bone powder and the deproteinization liquid extract were determined using specific analysis techniques: SEM/EDX, FTIR, XRD and 1H-NMR. The protein content of the deproteinization liquid was determined by OPA fluorescent assay. The zeta potential of the liquid extract was also determined. The obtained analytical results showed that the deproteinization liquid waste contained an adequate amount of soluble chitin fractions that could be used in food wastewater treatment. The effects of the coagulant dose and pH on the food industrial effluents were studied to confirm the effectiveness of the deproteinization liquid extract. Under optimal conditions, the coagulant showed satisfactory results. Process optimization was performed using the Box-Behnken design and response surface methodology. Thus, the optimal removal efficiencies predicted using this model for turbidity (99.68%), BOD5 (97.76%), and COD (82.92%) were obtained at a dosage of 8 mL biocoagulant in 0.5 L of food processing wastewater at an alkaline pH of 11.

4.
Materials (Basel) ; 15(7)2022 Mar 23.
Article in English | MEDLINE | ID: mdl-35407709

ABSTRACT

The recovery of scandium (Sc) from wastes and various resources using solvent extraction (SX) was discussed in detail. Moreover, the metallurgical extractive procedures for Sc recovery were presented. Acidic and neutral organophosphorus (OPCs) extractants are the most extensively used in industrial activities, considering that they provide the highest extraction efficiency of any of the valuable components. Due to the chemical and physical similarities of the rare earth metals, the separation and purification processes of Sc are difficult tasks. Sc has also been extracted from acidic solutions using carboxylic acids, amines, and acidic ß-diketone, among other solvents and chemicals. For improving the extraction efficiencies, the development of mixed extractants or synergistic systems for the SX of Sc has been carried out in recent years. Different operational parameters play an important role in the extraction process, such as the type of the aqueous phase and its acidity, the aqueous (A) to organic (O) and solid (S) to liquid (L) phase ratios, as well as the type of the diluents. Sc recovery is now implemented in industrial production using a combination of hydrometallurgical and pyrometallurgical techniques, such as ore pre-treatment, leaching, SX, precipitation, and calcination. The hydrometallurgical methods (acid leaching and SX) were effective for Sc recovery. Furthermore, the OPCs bis(2-ethylhexyl) phosphoric acid (D2EHPA/P204) and tributyl phosphate (TBP) showed interesting potential taking into consideration some co-extracted metals such as Fe(III) and Ti(IV).

5.
Materials (Basel) ; 15(2)2022 Jan 15.
Article in English | MEDLINE | ID: mdl-35057360

ABSTRACT

Fly ash wastes (silica, aluminum and iron-rich materials) could be smartly valorized by their incorporation in concrete formulation, partly replacing the cement. The necessary binding properties can be accomplished by a simple procedure: an alkali activation process, involving partial hydrolysis, followed by gel formation and polycondensation. The correlations between the experimental fly ash processing conditions, particle characteristics (size and morphology) and the compressive strength values of the concrete prepared using this material were investigated by performing a parametric optimization study to deduce the optimal processing set of conditions. The alkali activation procedure included the variation of the NaOH solutions concentration (8-12 M), temperature values (25-65 °C) and the liquid/solid ratio (1-3). The activation led to important modifications of the crystallography of the samples (shown by powder XRD analysis), their morphologies (seen by SEM), particle size distribution and Blaine surface values. The values of the compressive strength of concrete prepared using fly ash derivatives were between 16.8-22.6 MPa. Thus, the processed fly ash qualifies as a proper potential building material, solving disposal-associated problems, as well as saving significant amounts of cement consumed in concrete formulation.

6.
Materials (Basel) ; 14(23)2021 Nov 23.
Article in English | MEDLINE | ID: mdl-34885287

ABSTRACT

A novel liquid chitosan-based biocoagulant for treating wastewater from a Moroccan fish processing plant was successfully prepared from shrimp shells (Parapenaeus longirostris), the most abundant fish by-products in the country. The shells were characterized using scanning electron microscopy, energy-dispersive X-ray spectroscopy, X-ray diffraction, and Fourier transforms infrared spectroscopy. Using chitosan without adding acetic acid helps to minimize its negative impact on the environment. At the same time, the recovery of marine shellfish represents a promising solution for the management of solid fish waste. In order to test the treatment efficiency of the biocoagulant developed, a qualitative characterization of these effluents was carried out beforehand. The optimization process was conducted in two steps: jar-test experiments and modeling of the experimental results. The first step covered the preliminary assessment to identify the most influential operational parameters (experimental conditions), whereas the second step concerned the study of the effects of three significant operational parameters and their interactions using a Box-Behnken experimental design. The variables involved were the concentration of coagulant (X1), the initial pH (X2), and the temperature (X3) of the wastewater samples, while the responses were the removal rates of turbidity (Y1) and BOD5 (Y2). The regression models and response surface contour plots revealed that chitosan as a liquid biocoagulant was effective in removing turbidity (98%) and BOD5 (53%) during the treatment. The optimal experimental conditions were found to be an alkaline media (pH = 10.5) and a biocoagulant dose of 5.5 mL in 0.5 L of fish processing wastewater maintained at 20 °C.

7.
Polymers (Basel) ; 13(21)2021 Oct 24.
Article in English | MEDLINE | ID: mdl-34771222

ABSTRACT

This study may open a new way to obtain the coloration of a polymer during functionalization. Two polyacrylonitrile (PAN) polymers in the form of textile fibers (Melana and Dralon L) were subjected to functionalization treatments in order to improve the dyeing capacity. The functionalizations determined by an organo-hypervalent iodine reagent developed in situ led to fiber coloration without using dyes. KIO3 was formed in situ from the interaction of aqueous solutions of 3-9% KOH with 3-9% I2, at 120 °C. The yellow-orange coloration appeared as a result of the transformations in the chemical structure of each functionalized polymer, with the formation of iodinehydrin groups. The degree of functionalization directly influenced the obtained color. The results of the Fourier Transform Infrared Spectroscopy (FTIR), Scanning Electron Microscopy (SEM), Energy Dispersive X-ray Spectroscopy (EDX), Map and Temogravimetric Analysis (TG) plus Differential Thermal (DTA) analyses indicated the presence of new functional groups, such as iodine-oxime. The X-ray diffraction (XRD) analysis confirmed the change of the crystalline/amorphous ratio in favor of the former. The new groups introduced by functionalization make it possible to dye with classes of dyes specific to these groups, but not specific to PAN fibers, thus improving their dyeing capacity.

8.
Materials (Basel) ; 14(19)2021 Sep 23.
Article in English | MEDLINE | ID: mdl-34639913

ABSTRACT

In this research, multi-walled carbon nanotubes (MWCNTs) were functionalized by oxidation with strong acids HNO3, H2SO4, and H2O2. Then, magnetite/MWCNTs nanocomposites were prepared and polystyrene was added to prepare polystyrene/MWCNTs/magnetite (PS:MWCNTs:Fe) nanocomposites. The magnetic property of the prepared nano-adsorbent PS:MWCNTs:Fe was successfully checked. For characterization, X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, and BET surface area were used to determine the structure, morphology, chemical nature, functional groups, and surface area with pore volume of the prepared nano-adsorbents. The adsorption procedures were carried out for fresh MWCNTs, oxidized MWCNTs, MWCNTs-Fe, and PS:MWCNTs:Fe nanocomposites in batch experiments. Toluene standard was used to develop the calibration curve. The results of toluene adsorption experiments exhibited that the PS:MWCNTs:Fe nonabsorbent achieved the highest removal efficiency and adsorption capacity of toluene removal. The optimum parameters for toluene removal from water were found to be 60 min, 2 mg nano-sorbent dose, pH of 5, solution temperature of 35 °C at 50 mL volume, toluene concentration of 50 mg/L, and shaking speed of 240 rpm. The adsorption kinetic study of toluene followed the pseudo-second-order kinetics, with the best correlation (R2) value of 0.998, while the equilibrium adsorption study showed that the Langmuir isotherm was obeyed, which suggested that the adsorption is a monolayer and homogenous.

9.
Appl Radiat Isot ; 170: 109600, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33548812

ABSTRACT

The Cs- and Ba-sorption, onto bentonite from Kimolos island (Cyclades, Greece) was investigated in aqueous solutions in the presence of Na+, Ca2+ and humic acid. Batch experiments were performed using as tracers 137Cs and 133Ba and γ-ray spectroscopy. The sorption significantly depended on initial concentration, ionic strength and temperature of the solutions. The sorption isotherms were satisfactorily reproduced by the Langmuir and Freundlich equations. The kinetic experiments at 293, 308 and 323 K and the calculation of the thermodynamic parameters (ΔH, ΔS° and ΔG°) indicated that Cs- and Ba-sorption was spontaneous and endothermic process. The sorbent was characterized before and after the sorption experiments using Fourier transform infrared spectroscopy (FT-IR), X-ray powder diffraction (XRD), and scanning electron microscopy (SEM-EDS). It was demonstrated that the Kimolos bentonite is a good sorbent for cesium and barium from highly contaminated solutions and its sorption capacity reduced in presence of humic acid and competing cations.

10.
Chemosphere ; 264(Pt 2): 128465, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33091781

ABSTRACT

Arthrospira platensis is featured as a promising microalgae candidate for the development of the biosystems for air revitalisation in spacecrafts and life support in space. An enhanced configuration of a sparged type photobioreactor (PBR), containing 5 L of A. platensis culture, which was equipped with an external LED lighting tube around the reactor, was used in this study. The PBR was operated under dynamic conditions (0.5 L/min) with synthetic air containing CO2 (400, 900, 1400 ppm) and other gas traces (NO2 1 ppm, SO2 2.5 ppm, acetic acid vapours 1 ppm), at various light intensities (1.5, 2.5, 3.5 klux), according to an experimental design. The removal of gas traces (NO2, SO2 and acetic acid vapours) was below the detection limit (e.g. above 90% removal efficiency), while the removal of CO2 ranged between 69% and 85%, depending on the initial CO2 concentration and the light intensity. Thus, the system is able to roughly decrease the contaminant concentration from 1 ppm to below 0.1 ppm for NO2, 2.5 ppm to below 0.1 ppm for SO2, 1 ppm to below 1 ppb for acetic acid vapours and from 1400 ppm to 370 or from 400 ppm to 60 ppm for CO2. The system performance was thus subject to mathematical modelling and optimization in terms of CO2 removal efficiency and CO2 elimination capacity, which were also corroborated with the power consumption for illumination.


Subject(s)
Spacecraft , Spirulina , Biomass , Photobioreactors
11.
Materials (Basel) ; 13(24)2020 Dec 15.
Article in English | MEDLINE | ID: mdl-33334052

ABSTRACT

The aim of this study was to prepare novel supramolecular hybrid nanoparticles (HNPs) that can selectively separate and recover scandium metal ions, Sc(III), from an aqueous phase based on molecular recognition technology (MRT). Moreover, this approach is fully compatible with green chemistry principles. In this work, natural amorphous silica (SiO2) nanoparticles were prepared by a precipitation method from Iraqi rice husk (RH) followed by surface modification with 3-amino-propyl triethoxysilane (APTES) as coupling agent and Kryptofix 2.2.2 (K2.2.2) as polycyclic ligand. To evaluate the potential of the hybrid nanoparticles, the prepared HNPs were used for the solid-liquid extraction of scandium, Sc(III), ions from model solutions due to the fact that K2.2.2 are polycyclic molecules. These polycyclic molecules are able to encapsulate cations according to the corresponding cavity size with the ionic radius of metal by providing a higher protection due their cage-like structures. Moreover, the authors set the objectives to design a high-technology process using these HNPs and to develop a Sc recovery method from the aqueous model solution prior to employing it in industrial applications, e.g., for Sc recovery from red mud leachate. The concentrations of Sc model solutions were investigated using the UV-Vis spectrophotometer technique. Different characterization techniques were used including scanning electron microscope (SEM), atomic force microscopy (AFM), Brunauer-Emmett-Teller (BET), X-ray diffraction (XRD), X-ray fluorescence (XRF), and Fourier transform infrared (FTIR). The extraction efficiency of Sc varied from 81.3% to 96.7%. Moreover, the complexed Sc ions were efficiently recovered by HCl with 0.1 mol/L concentration. The stripping ratios of Sc obtained ranged from 93.1% to 97.8%.

12.
Environ Sci Pollut Res Int ; 27(16): 20136-20148, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32239409

ABSTRACT

Lake Nasser is one of the largest man-made lakes on earth. It has a vital importance to Egypt for several decades because of the safe water supply of the country. Therefore, the water quality of the Lake Nasser must be profoundly investigated, and physico-chemical parameter changes of the water of the Lake Nasser should be continuously monitored and assessed. This work describes the present state of the physico-chemical (nitrate-nitrogen, nitrite-nitrogen, orthophosphate, total phosphate content, dissolved oxygen content, chemical oxygen demand, and biological oxygen demand) water parameters of Lake Nasser in Egypt at nine measurement sites along the Lake Nasser. The algorithm was devised at the University of Pannonia, Hungary, for the evaluation of the water quality. The aquatic environmental indices determined alongside the Lake Nasser fall into the category of "good" water quality at seven sampling sites and exhibited "excellent" water quality at two sampling sites according to Egyptian Governmental Decree No. 92/2013. In light of the tremendous demand for safe and healthy water supply in Egypt and international requirements, the water quality assessment is a very important tool for providing reliable information on the water quality. The protocol for water quality assessment could significantly contribute to the provision of high-quality water supply in Egypt. In conclusion, it can be stated that the parameters under investigation in different regions of Lake Nasser fall within the permissible ranges and the water of the Lake has good quality for drinking, irrigation, and fish cultures according to Egyptian standards; however, according to European specifications, there are steps to be accomplished for future water quality improvement.


Subject(s)
Lakes , Water Pollutants, Chemical/analysis , Animals , Egypt , Environmental Monitoring , Hungary , Water Quality
13.
J Environ Manage ; 239: 333-341, 2019 Jun 01.
Article in English | MEDLINE | ID: mdl-30921752

ABSTRACT

This work aims to investigate the potential of Jordanian raw zeolitic tuff (RZT) as oil adsorbent for oil-contaminated water. As hydrophobic properties are the primary determinants of effective oil adsorbents, the hydrophobicity of RZT was enhanced by dealumination process; since the degree of hydrophobicity of zeolites is directly dependent on their aluminum content. The microemulsion modification of the dealuminated zeolitic tuff (TZT) was also applied to increase its hydrophobicity. The raw and modified tuffs were characterized in terms of the surface area and porosity (BET), mineral composition (XRD), microstructure and morphology using scanning electron microscopy (SEM) and Fourier-transform infrared spectroscopy (FTIR). In this work, a mixture of water and kerosene was used to examine the hydrophobic/organophilic character of raw and modified zeolitic tuff. Water/dodecane and water/octane mixtures were used to study the kinetics of the adsorption over zeolitic tuff. The results revealed that the sorption capacity using kerosene as a mixed model (water-oil) was enhanced by three- and four-fold for TZT and micro-emulsified zeolitic (MeTZT) tuff respectively. The adsorption capacity of modified zeolitic was compared with that of activated carbon adsorbents.


Subject(s)
Hydrocarbons/isolation & purification , Water/chemistry , Zeolites/chemistry , Adsorption , Kinetics , Water Pollutants, Chemical/chemistry
14.
Article in English | MEDLINE | ID: mdl-28257069

ABSTRACT

During the last two decades, the number of macrocell mobile telephony base station antennas emitting radiofrequency (RF) electromagnetic radiation (EMR) in residential areas has increased significantly, and therefore much more attention is being paid to RF EMR and its effects on human health. Scientific field measurements of public exposure to RF EMR (specifically to radio frequency radiation) from macrocell mobile telephony base station antennas and RF electromagnetic field (EMF) intensity parameters in the environment are discussed in this article. The research methodology is applied according to the requirements of safety norms and Lithuanian Standards in English (LST EN). The article presents and analyses RF EMFs generated by mobile telephony base station antennas in areas accessible to the general public. Measurements of the RF electric field strength and RF EMF power density were conducted in the near- and far-fields of the mobile telephony base station antenna. Broadband and frequency-selective measurements were performed outside (on the roof and on the ground) and in a residential area. The tests performed on the roof in front of the mobile telephony base station antennas in the near-field revealed the presence of a dynamic energy interaction within the antenna electric field, which changes rapidly with distance. The RF EMF power density values on the ground at distances of 50, 100, 200, 300, 400, and 500 m from the base station are very low and are scattered within intervals of 0.002 to 0.05 µW/cm². The results were compared with international exposure guidelines (ICNIRP).


Subject(s)
Cell Phone , Electromagnetic Fields , Electromagnetic Radiation , Environmental Exposure/analysis , Housing , Humans , Lithuania , Safety
15.
Environ Sci Pollut Res Int ; 23(11): 10693-10701, 2016 Jun.
Article in English | MEDLINE | ID: mdl-26884243

ABSTRACT

This paper analyses the capacity of the rape (Brassica napus) to extract Cd and Zn from the soil and the effect of these metals on the morphometric parameters of the plant (length, weight, surface area, fractal dimension of leaves). Rape plants were mostly affected by the combined toxicity of the Cd and Zn mixture that caused a significant reduction in the rate of seed germination, the plant biomass quantity and the fractal dimension. In the case of Cd soil pollution, the bioaccumulation factor (BAF), bioaccumulation coefficient (BAC) as well as the heavy metal root-to-stalk translocation factor (TF) were determined. The results showed that B. napus had a great potential as a cadmium hyperaccumulator but not as an accumulator of Zn or Cd + Zn mixture. The efficiency of phytoextraction rape was 0.8-1.22 % for a soil heavily polluted with cadmium.


Subject(s)
Brassica napus/metabolism , Cadmium/metabolism , Soil Pollutants/metabolism , Zinc/metabolism , Biodegradation, Environmental , Biomass , Brassica napus/drug effects , Brassica napus/growth & development , Cadmium/toxicity , Germination/drug effects , Plant Roots/drug effects , Plant Roots/growth & development , Plant Roots/metabolism , Plant Stems/drug effects , Plant Stems/growth & development , Plant Stems/metabolism , Seeds/drug effects , Seeds/growth & development , Soil Pollutants/toxicity , Zinc/toxicity
16.
Sensors (Basel) ; 13(4): 4367-77, 2013 Apr 02.
Article in English | MEDLINE | ID: mdl-23549362

ABSTRACT

All-solid-state sensors with polyvinyl chloride (PVC)-based membranes using off-the-shelf N-hydroxysuccinimide (NHS) and succinimide (Succ) ionophores were prepared using DOP (dioctyl phthalate) and NPOE (ortho-nitrophenyloctyl ether) as plasticizers. Good responses were obtained when NHS was used. The potentiometric response of the proposed electrode is independent of pH over the range 2-6. The electrode shows a fast response time of 0.25 s. The electrode exhibits a Super-Nernstian response, with 37.5 mV/decade, with a potentiometric detection limit of 4.4 µM. The proposed sensor revealed good selectivity towards a group of transition metal ions.

17.
Materials (Basel) ; 6(7): 2723-2746, 2013 Jul 10.
Article in English | MEDLINE | ID: mdl-28811405

ABSTRACT

The aim of this study was to determine the effects of main factors and interactions on the color removal performance from dye solutions using the electrocoagulation process enhanced by adsorption on Granular Activated Carbon (GAC). In this study, a mathematical approach was conducted using a two-level fractional factorial design (FFD) for a given dye solution. Three textile dyes: Acid Blue 74, Basic Red 1, and Reactive Black 5 were used. Experimental factors used and their respective levels were: current density (2.73 or 27.32 A/m²), initial pH of aqueous dye solution (3 or 9), electrocoagulation time (20 or 180 min), GAC dose (0.1 or 0.5 g/L), support electrolyte (2 or 50 mM), initial dye concentration (0.05 or 0.25 g/L) and current type (Direct Current-DC or Alternative Pulsed Current-APC). GAC-enhanced electrocoagulation performance was analyzed statistically in terms of removal efficiency, electrical energy, and electrode material consumptions, using modeling polynomial equations. The statistical significance of GAC dose level on the performance of GAC enhanced electrocoagulation and the experimental conditions that favor the process operation of electrocoagulation in APC regime were determined. The local optimal experimental conditions were established using a multi-objective desirability function method.

18.
Anal Bioanal Chem ; 404(5): 1529-38, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22832671

ABSTRACT

A magnetic material based on N-methylimidazolium ionic liquid and Fe(3)O(4) magnetic nanoparticles incorporated in a silica matrix has been used to extract and preconcentrate sulfonylurea herbicides, such as thifensulfuron methyl (TSM), metsulfuron methyl (MSM), triasulfuron (TS), tribenuron methyl (TBM) and primisulfuron methyl (PSM) from polluted water samples, prior to their analysis by capillary liquid chromatography with a diode array detector (DAD). Under the optimum conditions, this method allows the determination of TSM, MSM, TS, TBM and PSM in a linear range between 5 and 100 ng mL(-1), with relative standard deviation values lower than 5.3% (n = 10), in all cases. Detection limits ranging between 1.13 and 2.95 ng mL(-1) were achieved. The usefulness of the proposed method was demonstrated by the analysis of river water samples, obtaining recoveries higher than 91%.


Subject(s)
Herbicides/isolation & purification , Ionic Liquids/chemistry , Magnetite Nanoparticles/chemistry , Solid Phase Extraction/methods , Sulfonylurea Compounds/isolation & purification , Water Pollutants, Chemical/isolation & purification , Adsorption , Chromatography, Liquid/methods , Imidazoles/chemistry , Limit of Detection , Rivers/chemistry , Silicon Dioxide/chemistry
19.
J Hazard Mater ; 163(2-3): 475-510, 2009 Apr 30.
Article in English | MEDLINE | ID: mdl-18771850

ABSTRACT

Environmental contamination caused by radionuclides, in particular by uranium and its decay products is a serious problem worldwide. The development of nuclear science and technology has led to increasing nuclear waste containing uranium being released and disposed in the environment. The objective of this paper is to develop a better understanding of the techniques for the remediation of soils polluted with radionuclides (uranium in particular), considering: the chemical forms of uranium, including depleted uranium (DU) in soil and other environmental media, their characteristics and concentrations, and some of the effects on environmental and human health; research issues concerning the remediation process, the benefits and results; a better understanding of the range of uses and situations for which each is most appropriate. The paper addresses the main features of the following techniques for uranium remediation: natural attenuation, physical methods, chemical processes (chemical extraction methods from contaminated soils assisted by various suitable chelators (sodium bicarbonate, citric acid, two-stage acid leaching procedure), extraction using supercritical fluids such as solvents, permeable reactive barriers), biological processes (biomineralization and microbial reduction, phytoremediation, biosorption), and electrokinetic methods. In addition, factors affecting uranium removal from soils are furthermore reviewed including soil characteristics, pH and reagent concentration, retention time.


Subject(s)
Environmental Restoration and Remediation/methods , Soil Pollutants/isolation & purification , Uranium/isolation & purification , Radioisotopes/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL
...