Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Nucleic Acids Res ; 52(D1): D384-D392, 2024 Jan 05.
Article in English | MEDLINE | ID: mdl-37986215

ABSTRACT

Dynamical behaviour is one of the most crucial protein characteristics. Despite the advances in the field of protein structure resolution and prediction, analysis and prediction of protein dynamic properties remains a major challenge, mostly due to the low accessibility of data and its diversity and heterogeneity. To address this issue, we present ATLAS, a database of standardised all-atom molecular dynamics simulations, accompanied by their analysis in the form of interactive diagrams and trajectory visualisation. ATLAS offers a large-scale view and valuable insights on protein dynamics for a large and representative set of proteins, by combining data obtained through molecular dynamics simulations with information extracted from experimental structures. Users can easily analyse dynamic properties of functional protein regions, such as domain limits (hinge positions) and residues involved in interaction with other biological molecules. Additionally, the database enables exploration of proteins with uncommon dynamic properties conditioned by their environment such as chameleon subsequences and Dual Personality Fragments. The ATLAS database is freely available at https://www.dsimb.inserm.fr/ATLAS.


Subject(s)
Databases, Protein , Molecular Dynamics Simulation , Proteins , Proteins/chemistry , Proteins/metabolism , Internet
2.
Bioinformatics ; 39(8)2023 08 01.
Article in English | MEDLINE | ID: mdl-37498544

ABSTRACT

MOTIVATION: Alignment of protein structures is a major problem in structural biology. The first approach commonly used is to consider proteins as rigid bodies. However, alignment of protein structures can be very complex due to conformational variability, or complex evolutionary relationships between proteins such as insertions, circular permutations or repetitions. In such cases, introducing flexibility becomes useful for two reasons: (i) it can help compare two protein chains which adopted two different conformational states, such as due to proteins/ligands interaction or post-translational modifications, and (ii) it aids in the identification of conserved regions in proteins that may have distant evolutionary relationships. RESULTS: We propose ICARUS, a new approach for flexible structural alignment based on identification of Protein Units, evolutionarily preserved structural descriptors of intermediate size, between secondary structures and domains. ICARUS significantly outperforms reference methods on a dataset of very difficult structural alignments. AVAILABILITY AND IMPLEMENTATION: Code is freely available online at https://github.com/DSIMB/ICARUS.


Subject(s)
Algorithms , Proteins , Sequence Alignment , Proteins/chemistry , Protein Structure, Secondary , Biological Evolution , Software
3.
Nucleic Acids Res ; 50(W1): W732-W738, 2022 07 05.
Article in English | MEDLINE | ID: mdl-35580056

ABSTRACT

Understanding the functions and origins of proteins requires splitting these macromolecules into fragments that could be independent in terms of folding, activity, or evolution. For that purpose, structural domains are the typical level of analysis, but shorter segments, such as subdomains and supersecondary structures, are insightful as well. Here, we propose SWORD2, a web server for exploring how an input protein structure may be decomposed into 'Protein Units' that can be hierarchically assembled to delimit structural domains. For each partitioning solution, the relevance of the identified substructures is estimated through different measures. This multilevel analysis is achieved by integrating our previous work on domain delineation, 'protein peeling' and model quality assessment. We hope that SWORD2 will be useful to biologists searching for key regions in their proteins of interest and to bioinformaticians building datasets of protein structures. The web server is freely available online: https://www.dsimb.inserm.fr/SWORD2.


Subject(s)
Proteins , Software , Proteins/chemistry , Computers , Protein Conformation , Internet
4.
Platelets ; 33(1): 157-167, 2022 Jan 02.
Article in English | MEDLINE | ID: mdl-33444113

ABSTRACT

Essential thrombocythemia (ET) is a blood cancer defined by a strong increase of platelet numbers. A quarter of patients suffering from ET show mutations in the last exon of calreticulin (CALR) gene. Two variants named type 1 and type 2 represent 85% of these patients. However, a large number of other variants have been determined. In this study, we have compiled variants taken from COSMIC database and literature leading to 155 different variants. This large number of variants allowed redefining 5 new classes extending the classification of type 1-like and type 2-like to a finer description. These analyses showed that last class, named E, corresponding to more than 10% of CALR variants seemed not attached to ET. Structural properties analyzed showed that CALR variants associated to ET have common features. All the compiled and refined information had been included into a freely dedicated database CALR-ETdb (https://www.dsimb.inserm.fr/CALR-ET).


Subject(s)
Calreticulin/therapeutic use , Thrombocythemia, Essential/drug therapy , Calreticulin/pharmacology , Databases, Factual , Humans
5.
Int J Mol Sci ; 22(16)2021 Aug 17.
Article in English | MEDLINE | ID: mdl-34445537

ABSTRACT

Protein Blocks (PBs) are a widely used structural alphabet describing local protein backbone conformation in terms of 16 possible conformational states, adopted by five consecutive amino acids. The representation of complex protein 3D structures as 1D PB sequences was previously successfully applied to protein structure alignment and protein structure prediction. In the current study, we present a new model, PYTHIA (predicting any conformation at high accuracy), for the prediction of the protein local conformations in terms of PBs directly from the amino acid sequence. PYTHIA is based on a deep residual inception-inside-inception neural network with convolutional block attention modules, predicting 1 of 16 PB classes from evolutionary information combined to physicochemical properties of individual amino acids. PYTHIA clearly outperforms the LOCUSTRA reference method for all PB classes and demonstrates great performance for PB prediction on particularly challenging proteins from the CASP14 free modelling category.


Subject(s)
Algorithms , Deep Learning , Neural Networks, Computer , Protein Conformation , Proteins/chemistry , Sequence Analysis, Protein/methods , Software , Databases, Protein , Humans , Models, Molecular
6.
J Mol Biol ; 433(11): 166882, 2021 05 28.
Article in English | MEDLINE | ID: mdl-33972018

ABSTRACT

Information on the protein flexibility is essential to understand crucial molecular mechanisms such as protein stability, interactions with other molecules and protein functions in general. B-factor obtained in the X-ray crystallography experiments is the most common flexibility descriptor available for the majority of the resolved protein structures. Since the gap between the number of the resolved protein structures and available protein sequences is continuously growing, it is important to provide computational tools for protein flexibility prediction from amino acid sequence. In the current study, we report a Deep Learning based protein flexibility prediction tool MEDUSA (https://www.dsimb.inserm.fr/MEDUSA). MEDUSA uses evolutionary information extracted from protein homologous sequences and amino acid physico-chemical properties as input for a convolutional neural network to assign a flexibility class to each protein sequence position. Trained on a non-redundant dataset of X-ray structures, MEDUSA provides flexibility prediction in two, three and five classes. MEDUSA is freely available as a web-server providing a clear visualization of the prediction results as well as a standalone utility (https://github.com/DSIMB/medusa). Analysis of the MEDUSA output allows a user to identify the potentially highly deformable protein regions and general dynamic properties of the protein.


Subject(s)
Computational Biology/methods , Proteins/chemistry , Software , Amino Acid Sequence , Databases, Protein
SELECTION OF CITATIONS
SEARCH DETAIL
...