Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Microsyst Nanoeng ; 10: 61, 2024.
Article in English | MEDLINE | ID: mdl-38751997

ABSTRACT

Piezoelectric accelerometers excel in vibration sensing. In the emerging trend of fully organic electronic microsystems, polymeric piezoelectric accelerometers can be used as vital front-end components to capture dynamic signals, such as vocal vibrations in wearable speaking assistants for those with speaking difficulties. However, high-performance polymeric piezoelectric accelerometers suitable for such applications are rare. Piezoelectric organic compounds such as PVDF have inferior properties to their inorganic counterparts such as PZT. Consequently, most existing polymeric piezoelectric accelerometers have very unbalanced performance metrics. They often sacrifice resonance frequency and bandwidth for a flat-band sensitivity comparable to those of PZT-based accelerometers, leading to increased noise density and limited application potentials. In this study, a new polymeric piezoelectric accelerometer design to overcome the material limitations of PVDF is introduced. This new design aims to simultaneously achieve high sensitivity, broad bandwidth, and low noise. Five samples were manufactured and characterized, demonstrating an average sensitivity of 29.45 pC/g within a ± 10 g input range, a 5% flat band of 160 Hz, and an in-band noise density of 1.4 µg/Hz. These results surpass those of many PZT-based piezoelectric accelerometers, showing the feasibility of achieving comprehensively high performance in polymeric piezoelectric accelerometers to increase their potential in novel applications such as organic microsystems.

2.
Microsyst Nanoeng ; 9: 151, 2023.
Article in English | MEDLINE | ID: mdl-38033989

ABSTRACT

The piezoelectric coupling principle is widely used (along with capacitive coupling and piezoresistive coupling) for MEMS accelerometers. Piezoelectric MEMS accelerometers are used primarily for vibration monitoring. Polymer piezoelectric MEMS accelerometers offer the merits of heavy-metal-free structure material and simple microfabrication flow. More importantly, polymeric piezoelectric MEMS accelerometers may be the basis of novel applications, such as fully organic inertial sensing microsystems using polymer sensors and organic integrated circuits. This paper presents a novel polymer piezoelectric MEMS accelerometer design using PVDF films. A simple and rapid microfabrication flow based on laser micromachining of thin films and 3D stereolithography was developed to fabricate three samples of this design. During proof-of-concept experiments, the design achieved a sensitivity of 21.82 pC/g (equivalent open-circuit voltage sensitivity: 126.32 mV/g), a 5% flat band of 58.5 Hz, and a noise density of 6.02 µg/√Hz. Thus, this design rivals state-of-the-art PZT-based counterparts in charge sensitivity and noise density, and it surpasses the performance capabilities of several commercial MEMS accelerometers. Moreover, this design has a 10-times smaller device area and a 4-times larger flat band than previous state-of-the-art organic piezoelectric MEMS accelerometers. These experimentally validated performance metrics demonstrate the promising application potential of the polymeric piezoelectric MEMS accelerometer design presented in this article.

3.
Micromachines (Basel) ; 13(12)2022 Dec 07.
Article in English | MEDLINE | ID: mdl-36557463

ABSTRACT

Tactile sensors are important bionic microelectromechanical systems that are used to implement an artificial sense of touch for medical electronics. Compared with the natural sense of touch, this artificial sense of touch provides more quantitative information, augmenting the objective aspects of several medical operations, such as palpation-based diagnosis. Tactile sensors can be effectively used for hardness differentiation during the palpation process. Since palpation requires direct physical contact with patients, medical safety concerns are alleviated if the sensors used can be made disposable. In this respect, the low-cost, rapid fabrication of tactile sensors based on polymers is a possible alternative. The present work uses the 3D printing of elastic resins and the laser micromachining of piezoelectric polymeric films to make a low-cost tactile sensor for hardness differentiation through palpation. The fabricated tactile sensor has a sensitivity of 1.52 V/mm to mechanical deformation at the vertical direction, a sensitivity of 11.72 mV/HA in sensing material hardness with a pressing depth of 500 µm for palpation, and a validated capability to detect rigid objects buried in a soft tissue phantom. Its performance is comparable with existing piezoelectric tactile sensors for similar applications. In addition, the tactile sensor has the additional advantage of providing a simpler microfabrication process.

4.
Sensors (Basel) ; 22(8)2022 Apr 13.
Article in English | MEDLINE | ID: mdl-35458979

ABSTRACT

Resonating MEMS mass sensors are microdevices with broad applications in fields such as bioscience and biochemistry. Their advantageous surface-to-volume ratio makes their resonant frequency highly sensitive to variations in their mass induced by surface depositions. Recent global challenges, such as water quality monitoring or pandemic containment, have increased the need for low-cost (even disposable), rapidly fabricated microdevices as suitable detectors. Resonant MEMS mass sensors are among the best candidates. This paper introduces a simple and robust fabrication of polymeric piezoelectric resonating MEMS mass sensors. The microfabrication technology replaces the traditional layer-by-layer micromachining techniques with laser micromachining to gain extra simplicity. Membrane-based resonant sensors have been fabricated to test the technology. Their characterization results have proven that the technology is robust with good reproducibility (around 2% batch level variations in the resonant frequency). Initial tests for the MEMS mass sensors' sensitivity have indicated a sensitivity of 340 Hz/ng. The concept could be a starting point for developing low-cost MEMS sensing solutions for pandemic control, health examination, and pollution monitoring.


Subject(s)
Micro-Electrical-Mechanical Systems , Microtechnology , Polymers , Reproducibility of Results
5.
Micromachines (Basel) ; 11(3)2020 Mar 18.
Article in English | MEDLINE | ID: mdl-32197487

ABSTRACT

In this paper, a simple fabrication process for SU-8 in-plane micro electro-mechanical systems (MEMS) structures, called "border-bulk micromachining", is introduced. It aims to enhance the potential of SU-8 MEMS structures for applications such as low-cost/disposable microsystems and wearable MEMS. The fabrication process is robust and uses only four processing steps to fabricate SU-8 in-plane MEMS structures, simplifying the fabrication flow in comparison with other reported attempts. The whole fabrication process has been implemented on copper-polyimide composites. A new processing method enables the direct, laser-based micromachining of polyimide in a practical way, bringing in extra processing safety and simplicity. After forming the polymeric in-plane MEMS structures through SU-8 lithography, a copper wet etching masked by the SU-8 structure layers is carried out. After the wet etching, fabricated in-plane MEMS structures are suspended within an open window on the substrate, similar to the final status of in-plane MEMS devices made from industrial silicon micromachining methods (such as SOIMUMPS). The last step of the fabrication flow is a magnetron sputtering of aluminum. The border-bulk micromachining process has been experimentally evaluated through the fabrication and the characterization of simple in-plane electrically actuated MEMS test structures. The characterization results of these simple test structures have verified the following process qualities: controllability, reproducibility, predictability and general robustness.

6.
Microsyst Nanoeng ; 4: 19, 2018.
Article in English | MEDLINE | ID: mdl-31057907

ABSTRACT

The ultrasonic transducer industry is dominated by piezoelectric materials. As an emerging alternative, capacitive micromachined ultrasound transducers (CMUTs) offer wider bandwidth, better integration with electronics, and ease of fabricating large arrays. CMUTs have a sealed cavity between a fixed electrode and a suspended metalized membrane. Manufacturing cost and sensitivity are limiting factors in current CMUTs that depend on the fabrication equipment and, especially, on the materials used. For widespread use of CMUTs, a much lower fabrication cost that uses inexpensive materials, which maintain or improve upon existing sensitivity, is needed. Herein, a new fabrication process is described for polymer-based CMUTs (polyCMUTs) using the photopolymer SU-8 and Omnicoat. The first ultrasound B-mode image of a wire phantom created with a 64-element linear array using synthetic aperture beamforming techniques is presented. A 12 V AC signal superimposed on a 10 VDC signal was used on the transmission side, and only a bias-tee, with no amplifiers, was used on the receiving side. The low operational voltage and high sensitivity of this device can be partially attributed to a pre-biasing condition on the membrane. By using a novel sacrificial layer combined with a top electrode embedded inside the membrane, we demonstrated that SU-8 can be used to manufacture CMUTs inexpensively. Moreover, the fabrication used relatively simple equipment, and the number of fabrication steps was reduced compared to traditional CMUT fabrication. This new fabrication process has the potential to increase the use of CMUTs in the ultrasound market, including the market for wearable transducers.

7.
Sensors (Basel) ; 17(11)2017 Nov 17.
Article in English | MEDLINE | ID: mdl-29149080

ABSTRACT

During the last decades, smart tactile sensing systems based on different sensing techniques have been developed due to their high potential in industry and biomedical engineering. However, smart tactile sensing technologies and systems are still in their infancy, as many technological and system issues remain unresolved and require strong interdisciplinary efforts to address them. This paper provides an overview of smart tactile sensing systems, with a focus on signal processing technologies used to interpret the measured information from tactile sensors and/or sensors for other sensory modalities. The tactile sensing transduction and principles, fabrication and structures are also discussed with their merits and demerits. Finally, the challenges that tactile sensing technology needs to overcome are highlighted.


Subject(s)
Electronics , Touch , Biomedical Engineering , Electronic Data Processing , Equipment Design , Robotics
8.
Sensors (Basel) ; 17(6)2017 Jun 17.
Article in English | MEDLINE | ID: mdl-28629134

ABSTRACT

This article describes a new low-cost rapid microfabrication technology for high-density interconnects and passive devices on flexible substrates for sensing applications. Silver nanoparticles with an average size of 80 nm were used to create a conductive SU-8 mixture with a concentration of wt 25%. The patterned structures after hard baking have a sheet resistance of 11.17 Ω /□. This conductive SU-8 was used to pattern planar inductors, capacitors and interconnection lines on flexible Kapton film. The conductive SU-8 structures were used as a seed layer for a subsequent electroplating process to increase the conductivity of the devices. Examples of inductors, resistor-capacitor (RC) and inductor-capacitor (LC) circuits, interconnection lines and a near-field communication (NFC) antenna are presented as a demonstration. As an example of high-resolution miniaturization, we fabricated microinductors having line widths of 5 µ m. Mechanical bending tests were successful down to a 5 mm radius. To the best of the authors' knowledge, this is the first report of conductive SU-8 used to fabricate such planar devices and the first on flexible substrates. This is a proof of concept that this fabrication approach can be used as an alternative for microfabrication of planar passive devices on flexible substrates.

9.
Lab Chip ; 16(17): 3351-61, 2016 08 16.
Article in English | MEDLINE | ID: mdl-27444216

ABSTRACT

In this paper, we present a disposable inkjet dispenser platform technology and demonstrate the Lab-on-a-Printer concept, an extension of the ubiquitous Lab-on-a-Chip concept, whereby microfluidic modules are directly integrated into the printhead. The concept is demonstrated here through the integration of an inkjet dispenser and a microfluidic mixer enabling control over droplet composition from a single nozzle in real-time during printing. The inkjet dispenser is based on a modular design platform that enables the low-cost microfluidic component and the more expensive actuation unit to be easily separated, allowing for the optional disposal of the former and reuse of the latter. To limit satellite droplet formation, a hydrophobic-coated and tapered micronozzle was microfabricated and integrated with the fluidics to realize the dispenser. The microfabricated devices generated droplets with diameters ranging from 150-220 µm, depending mainly on the orifice diameter, with printing rates up to 8000 droplets per second. The inkjet dispenser is capable of dispensing materials with a viscosity up to ∼19 mPa s. As a demonstration of the inkjet dispenser function and application, we have printed type I collagen seeded with human liver carcinoma cells (cell line HepG2), to form patterned biological structures.


Subject(s)
Cell Culture Techniques/instrumentation , Equipment Design , Hepatoblastoma/pathology , Lab-On-A-Chip Devices , Liver Neoplasms/pathology , Microtechnology/methods , Printing, Three-Dimensional , Cells, Immobilized , Collagen Type I/chemistry , Collagen Type I/metabolism , Computer-Aided Design , Dimethylpolysiloxanes/chemistry , Disposable Equipment , Epoxy Compounds/chemistry , Epoxy Compounds/radiation effects , Hep G2 Cells , Hepatoblastoma/metabolism , Humans , Hydrophobic and Hydrophilic Interactions/radiation effects , Liver Neoplasms/metabolism , Stereolithography , Surface Properties , Ultraviolet Rays , Viscosity/radiation effects
10.
Opt Lett ; 41(7): 1538-41, 2016 Apr 01.
Article in English | MEDLINE | ID: mdl-27192281

ABSTRACT

We demonstrate large-area silicon-on-insulator ring resonators with Q values of about 2×106 at critical coupling and 3.6×106 for heavily undercoupled conditions. A model has been developed to understand the impact of waveguide backscattering and subcomponent imperfections on the spectral response of our devices. The model predicts the appearance of signals at ports that would not have them under backscattering-free, ideal-power-splitting conditions. The predictions of our model are shown to match the phenomena observed in our measurements.

11.
Med Sci Sports Exerc ; 46(8): 1610-6, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24500539

ABSTRACT

INTRODUCTION: Limited access to sophisticated technology and the unreliability of simple tools prevent accurate and reliable human standing balance assessments outside research laboratory settings. The goal of this study was to develop and validate a simple objective balance assessment tool that provides an accurate, reliable, and affordable alternative to currently available laboratory and clinical methods. METHODS: Thirty healthy subjects were filmed performing the Balance Error Scoring System (BESS) while wearing inertial measurement units (IMU) measuring linear accelerations and angular velocities from seven locations of the body: forehead, sternum, waist, right and left wrist, and right and left shin. Each video was scored by four experienced BESS raters, whose mean scores were used to develop an algorithm computing objective BESS (oBESS) scores solely from IMU data. Interrater reliability and accuracy of oBESS scores were assessed using intraclass correlations (ICC). RESULTS: Raters displayed low variability in scoring (ICC3,1 = 0.91). The oBESS was able to produce scores with accurate fit to raters (ICC3,1 = 0.92) and predicted individual BESS scores (ICC3,1 = 0.90) using data from one IMU placed at the forehead. oBESS was unable to produce accurate scores (ICC3,1 = 0.68) when using IMU data from the subset of conditions (firm surface only) used in popular concussion identification protocols. CONCLUSION: The oBESS can reliably predict total BESS scores in healthy subjects. Pending further validation, oBESS could represent a valid tool to assess balance by offering an objective and reliable alternative to the current scoring methods of the BESS.


Subject(s)
Algorithms , Athletic Injuries/diagnosis , Brain Concussion/diagnosis , Postural Balance , Adult , Athletic Injuries/physiopathology , Brain Concussion/physiopathology , Female , Humans , Male , Observer Variation , Reproducibility of Results , Severity of Illness Index , Young Adult
12.
Article in English | MEDLINE | ID: mdl-24158286

ABSTRACT

This paper investigates a low computational cost, super-resolution ultrasound imaging method that leverages the asymmetric vibration mode of CMUTs. Instead of focusing on the broadband received signal on the entire CMUT membrane, we utilize the differential signal received on the left and right part of the membrane obtained by a multi-electrode CMUT structure. The differential signal reflects the asymmetric vibration mode of the CMUT cell excited by the nonuniform acoustic pressure field impinging on the membrane, and has a resonant component in immersion. To improve the resolution, we propose an imaging method as follows: a set of manifold matrices of CMUT responses for multiple focal directions are constructed off-line with a grid of hypothetical point targets. During the subsequent imaging process, the array sequentially steers to multiple angles, and the amplitudes (weights) of all hypothetical targets at each angle are estimated in a maximum a posteriori (MAP) process with the manifold matrix corresponding to that angle. Then, the weight vector undergoes a directional pruning process to remove the false estimation at other angles caused by the side lobe energy. Ultrasound imaging simulation is performed on ring and linear arrays with a simulation program adapted with a multi-electrode CMUT structure capable of obtaining both average and differential received signals. Because the differential signals from all receiving channels form a more distinctive temporal pattern than the average signals, better MAP estimation results are expected than using the average signals. The imaging simulation shows that using differential signals alone or in combination with the average signals produces better lateral resolution than the traditional phased array or using the average signals alone. This study is an exploration into the potential benefits of asymmetric CMUT responses for super-resolution imaging.


Subject(s)
Computer Simulation , Image Processing, Computer-Assisted/methods , Signal Processing, Computer-Assisted/instrumentation , Transducers , Ultrasonography/instrumentation , Phantoms, Imaging , Ultrasonography/methods
13.
Comput Math Methods Med ; 2013: 167069, 2013.
Article in English | MEDLINE | ID: mdl-23956786

ABSTRACT

We present a new method for removing artifacts in electroencephalography (EEG) records during Galvanic Vestibular Stimulation (GVS). The main challenge in exploiting GVS is to understand how the stimulus acts as an input to brain. We used EEG to monitor the brain and elicit the GVS reflexes. However, GVS current distribution throughout the scalp generates an artifact on EEG signals. We need to eliminate this artifact to be able to analyze the EEG signals during GVS. We propose a novel method to estimate the contribution of the GVS current in the EEG signals at each electrode by combining time-series regression methods with wavelet decomposition methods. We use wavelet transform to project the recorded EEG signal into various frequency bands and then estimate the GVS current distribution in each frequency band. The proposed method was optimized using simulated signals, and its performance was compared to well-accepted artifact removal methods such as ICA-based methods and adaptive filters. The results show that the proposed method has better performance in removing GVS artifacts, compared to the others. Using the proposed method, a higher signal to artifact ratio of -1.625 dB was achieved, which outperformed other methods such as ICA-based methods, regression methods, and adaptive filters.


Subject(s)
Electroencephalography/statistics & numerical data , Wavelet Analysis , Adult , Algorithms , Artifacts , Brain/physiology , Electric Stimulation , Female , Humans , Male , Middle Aged , Models, Neurological , Regression Analysis , Vestibule, Labyrinth/physiology , Young Adult
14.
Eur J Neurosci ; 33(2): 298-305, 2011 Jan.
Article in English | MEDLINE | ID: mdl-21155903

ABSTRACT

Motor performance is profoundly influenced by sensory information, yet sensory input can be noisy and uncertain. The basal ganglia and the cerebellum are important in processing sensory uncertainty, as the basal ganglia incorporate the uncertainty of predictive reward cues to reinforce motor programs, and the cerebellum and its connections mitigate the effect of ambiguous sensory input on motor performance through the use of forward models. Although Parkinson's disease (PD) is classically considered a primary disease of the basal ganglia, alterations in cerebellar activation are also observed, which may have consequences for the processing of sensory uncertainty. The aim of this study was to investigate the effect of visual uncertainty on motor performance in 15 PD patients and ten age-matched control subjects. Subjects performed a visually guided tracking task, requiring large-amplitude arm movements, by tracking with their index finger a moving target along a smooth trajectory. To induce visual uncertainty, the target position randomly jittered about the desired trajectory with increasing amplitudes. Tracking error was related to target ambiguity to a significantly greater degree in PD subjects off medication compared with control subjects, indicative of susceptibility to visual uncertainty in PD. l-Dopa partially ameliorated this deficit. We interpret our findings as suggesting an inability of PD subjects to create adequate forward models and/or de-weight less informative visual input. As these computations are normally associated with the cerebellum and connections, we suggest that alterations in normal cerebellar functioning may be a significant contributor to altered motor performance in PD.


Subject(s)
Cerebellar Diseases/physiopathology , Parkinson Disease/physiopathology , Psychomotor Performance/physiology , Sensation/physiology , Uncertainty , Aged , Antiparkinson Agents/pharmacology , Antiparkinson Agents/therapeutic use , Female , Humans , Levodopa/pharmacology , Levodopa/therapeutic use , Male , Middle Aged , Movement/physiology , Parkinson Disease/drug therapy , Photic Stimulation , Psychomotor Performance/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...