Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Ther Nucleic Acids ; 29: 769-786, 2022 Sep 13.
Article in English | MEDLINE | ID: mdl-36159592

ABSTRACT

Satellite cells (SCs), muscle stem cells, display functional heterogeneity, and dramatic changes linked to their regenerative capabilities are associated with muscle-wasting diseases. SC behavior is related to endogenous expression of the myogenic transcription factor MYF5 and the propensity to enter into the cell cycle. Here, we report a role for miR-106b reinforcing MYF5 inhibition and blocking cell proliferation in a subset of highly quiescent SC population. miR-106b down-regulation occurs during SC activation and is required for proper muscle repair. In addition, miR-106b is increased in dystrophic mice, and intramuscular injection of antimiR in injured mdx mice enhances muscle regeneration promoting transcriptional changes involved in skeletal muscle differentiation. miR-106b inhibition promotes the engraftment of human muscle stem cells. Furthermore, miR-106b is also high in human dystrophic muscle stem cells and its inhibition improves intrinsic proliferative defects and increases their myogenic potential. This study demonstrates that miR-106b is an important modulator of SC quiescence, and that miR-106b may be a new target to develop therapeutic strategies to promote muscle regeneration improving the regenerative capabilities of injured dystrophic muscle.

2.
Mol Genet Metab ; 128(1-2): 129-136, 2019.
Article in English | MEDLINE | ID: mdl-31378569

ABSTRACT

Late onset Pompe disease (LOPD) is a genetic disorder characterized by slowly progressive skeletal and respiratory muscle weakness. Symptomatic patients are treated with enzyme replacement therapy (ERT) with alglucosidase alpha (rhGAA). Although most of ERT treated patients develop antibodies against rhGAA, their influence on clinical progression is not completely known. We studied the impact of anti-rhGAA antibodies on clinical progression of 25 ERT treated patients. We evaluated patients at visit 0 and, after 1 year, at visit 1. We performed several muscle function tests, conventional spirometry and quantitative muscle MRI (qMRI) using 3-point Dixon analysis of thigh muscles at both visits. We also obtained serum samples at both visits and anti-rhGAA antibodies were quantified using ELISA. Antibody titers higher than 1:200 were identified in 18 patients (72%) of our cohort. Seven patients (28%) did not develop antibodies (0 to <1:200), 17 patients (68%) developed low to intermediate titers (1:200 to <1:31,200) and 1 patient (4%) developed high titers (>1:31,200). We analyzed the effect of low and intermediate antibody titers in clinical and radiological progression. There were no differences between the results of muscle function tests, spirometry or fat fraction analyzed using qMRI between patients with and without antibodies groups at baseline. Moreover, antibody titers did not influence muscle function test, spirometry results or qMRI results at year 1 visit. Most of the LOPD patients developed antibodies against ERT that persisted over time at low or intermediate levels. However, antibodies at these low and intermediate titers might not influence clinical response to the drug.


Subject(s)
Antibodies/blood , Enzyme Replacement Therapy , Glycogen Storage Disease Type II/drug therapy , Late Onset Disorders/drug therapy , alpha-Glucosidases/immunology , Adult , Aged , Female , Humans , Longitudinal Studies , Male , Middle Aged , Muscle, Skeletal/drug effects , Prospective Studies
3.
Stem Cell Reports ; 10(4): 1398-1411, 2018 04 10.
Article in English | MEDLINE | ID: mdl-29641992

ABSTRACT

Duchenne muscular dystrophy (DMD), one of the most lethal genetic disorders, involves progressive muscle degeneration resulting from the absence of DYSTROPHIN. Lack of DYSTROPHIN expression in DMD has critical consequences in muscle satellite stem cells including a reduced capacity to generate myogenic precursors. Here, we demonstrate that the c-isoform of PITX2 transcription factor modifies the myogenic potential of dystrophic-deficient satellite cells. We further show that PITX2c enhances the regenerative capability of mouse DYSTROPHIN-deficient satellite cells by increasing cell proliferation and the number of myogenic committed cells, but importantly also increasing dystrophin-positive (revertant) myofibers by regulating miR-31. These PITX2-mediated effects finally lead to improved muscle function in dystrophic (DMD/mdx) mice. Our studies reveal a critical role for PITX2 in skeletal muscle repair and may help to develop therapeutic strategies for muscular disorders.


Subject(s)
Homeodomain Proteins/metabolism , Muscular Dystrophy, Duchenne/pathology , Myoblasts/metabolism , Myoblasts/transplantation , Regeneration , Transcription Factors/metabolism , Animals , Cell Differentiation , Down-Regulation , Dystrophin/metabolism , Mice, Inbred C57BL , Mice, Inbred mdx , MicroRNAs/metabolism , Models, Biological , Muscle Development , Muscular Dystrophy, Duchenne/metabolism , Muscular Dystrophy, Duchenne/therapy , Satellite Cells, Skeletal Muscle/transplantation , Homeobox Protein PITX2
SELECTION OF CITATIONS
SEARCH DETAIL
...