Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Ecol Appl ; 27(2): 503-518, 2017 03.
Article in English | MEDLINE | ID: mdl-27767233

ABSTRACT

Balancing economic, ecological, and social values has long been a challenge in the forests of the Pacific Northwest, where conflict over timber harvest and old-growth habitat on public lands has been contentious for the past several decades. The Northwest Forest Plan, adopted two decades ago to guide management on federal lands, is currently being revised as the region searches for a balance between sustainable timber yields and habitat for sensitive species. In addition, climate change imposes a high degree of uncertainty on future forest productivity, sustainability of timber harvest, wildfire risk, and species habitat. We evaluated the long-term, landscape-scale trade-offs among carbon (C) storage, timber yield, and old forest habitat given projected climate change and shifts in forest management policy across 2.1 million hectares of forests in the Oregon Coast Range. Projections highlight the divergence between private and public lands under business-as-usual forest management, where private industrial forests are heavily harvested and many public (especially federal) lands increase C and old forest over time but provide little timber. Three alternative management scenarios altering the amount and type of timber harvest show widely varying levels of ecosystem C and old-forest habitat. On federal lands, ecological forestry practices also allowed a simultaneous increase in old forest and natural early-seral habitat. The ecosystem C implications of shifts away from current practices were large, with current practices retaining up to 105 Tg more C than the alternative scenarios by the end of the century. Our results suggest climate change is likely to increase forest productivity by 30-41% and total ecosystem C storage by 11-15% over the next century as warmer winter temperatures allow greater forest productivity in cooler months. These gains in C storage are unlikely to be offset by wildfire under climate change, due to the legacy of management and effective fire suppression. Our scenarios of future conditions can inform policy makers, land managers, and the public about the potential effects of land management alternatives, climate change, and the trade-offs that are inherent to management and policy in the region.


Subject(s)
Carbon/analysis , Climate Change , Forestry/methods , Forests , Trees , Oregon , Trees/growth & development , Wood
2.
Environ Manage ; 55(1): 43-55, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25216989

ABSTRACT

Climate change, along with exotic species, disturbances, and land use change, will likely have major impacts on sagebrush steppe ecosystems in the western U.S. over the next century. To effectively manage sagebrush steppe landscapes for long-term goals, managers need information about the interacting impacts of climate change, disturbances and land management on vegetation condition. Using a climate-informed state-and-transition model, we evaluated the potential impacts of climate change on rangeland condition in central Oregon and the effectiveness of multiple management strategies. Under three scenarios of climate change, we projected widespread shifts in potential vegetation types over the twenty-first century, with declining sagebrush steppe and expanding salt desert shrub likely by the end of the century. Many extreme fire years occurred under all climate change scenarios, triggering rapid vegetation shifts. Increasing wildfire under climate change resulted in expansion of exotic grasses but also decreased juniper encroachment relative to projections without climate change. Restoration treatments in warm-dry sagebrush steppe were ineffective in containing exotic grass, but juniper treatments in cool-moist sagebrush steppe substantially reduced the rate of juniper encroachment, particularly when prioritized early in the century. Overall, climate-related shifts dominated future vegetation patterns, making management for improved rangeland condition more difficult. Our approach allows researchers and managers to examine long-term trends and uncertainty in rangeland vegetation condition and test the effectiveness of alternative management actions under projected climate change.


Subject(s)
Artemisia/growth & development , Conservation of Natural Resources , Juniperus/growth & development , Poaceae/growth & development , Agriculture , Climate Change , Ecosystem , Environment , Fires , Oregon
SELECTION OF CITATIONS
SEARCH DETAIL
...