Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Elife ; 122023 01 13.
Article in English | MEDLINE | ID: mdl-36637156

ABSTRACT

Biological rhythms are ubiquitous. They can be generated by circadian oscillators, which produce daily rhythms in physiology and behavior, as well as by developmental oscillators such as the segmentation clock, which periodically produces modular developmental units. Here, we show that the circadian clock controls the timing of late-stage floret development, or anthesis, in domesticated sunflowers. In these plants, up to thousands of individual florets are tightly packed onto a capitulum disk. While early floret development occurs continuously across capitula to generate iconic spiral phyllotaxy, during anthesis floret development occurs in discrete ring-like pseudowhorls with up to hundreds of florets undergoing simultaneous maturation. We demonstrate circadian regulation of floral organ growth and show that the effects of light on this process are time-of-day dependent. Delays in the phase of floral anthesis delay morning visits by pollinators, while disruption of circadian rhythms in floral organ development causes loss of pseudowhorl formation and large reductions in pollinator visits. We therefore show that the sunflower circadian clock acts in concert with environmental response pathways to tightly synchronize the anthesis of hundreds of florets each day, generating spatial patterns on the developing capitulum disk. This coordinated mass release of floral rewards at predictable times of day likely promotes pollinator visits and plant reproductive success.


Most organisms, from plants to insects and humans, anticipate the rise and set of the sun through an internal biological timekeeper, called the circadian clock. Plants like the common sunflower use this clock to open their flowers at dawn in time for the arrival of pollinating insects. Sunflowers are composed of many individual flowers or florets, which are arranged in spirals around a centre following an age gradient: the oldest flowers are on the outside and youngest flowers on the inside. Each day, a ring of florets of different developmental ages coordinates their opening in a specific pattern over the day. For example, petals open at dawn, pollen is presented in the morning, and stigmas, the female organs that receive pollen, unfold in the afternoon. This pattern of flowering, or floret maturation, is repeated every day for five to ten days, creating daily rhythms of flowering across the sunflower head. Previously, it was unclear how florets within each flowering ring synchronize their flowering patterns to precise times during the day. To find out more, Marshall et al. analysed time-lapse videos of sunflowers that were exposed to different day length and temperature conditions. Sunflowers opened a new floret ring every 24 hours, regardless of the length of the day. In all three day-length scenarios (short, middle, long), the development of the florets remained highly coordinated. Even flowers kept in the dark for up to four days were able to maintain the same daily growth rhythms. This persistence of daily rhythms in the absence of environmental cues suggests that the circadian clock regulates the genetic pathways that cause sunflowers to flower. However, when sunflowers whose circadian rhythms were delayed relative to the sun were placed out in a field, the sunflowers flowered later and thus attracted less pollinators. Marshall et al. show that the circadian clock is important for regulating flowering patterns in sunflowers to ensure their successful pollination. A better understanding of the interplay between pollinators, flowering plants and their environment will provide more insight into how climate change may affect pollination efficiency. By identifying the genes and pathways underlying flowering patterns, it may be possible to develop breeds that flower at the optimal times of day to promote pollination. This could help mitigate the effects of climate change and declining populations of pollinators.


Subject(s)
Circadian Clocks , Helianthus , Circadian Clocks/physiology , Circadian Rhythm/physiology , Reproduction
2.
New Phytol ; 232(2): 868-879, 2021 10.
Article in English | MEDLINE | ID: mdl-34318484

ABSTRACT

Effective insect pollination requires appropriate responses to internal and external environmental cues in both the plant and the pollinator. Helianthus annuus, a highly outcrossing species, is marked for its uniform eastward orientation of mature pseudanthia, or capitula. Here we investigate how this orientation affects floral microclimate and the consequent effects on plant and pollinator interactions and reproductive fitness. We artificially manipulated sunflower capitulum orientation and temperature in both field and controlled conditions and assessed flower physiology, pollinator visits, seed traits and siring success. East-facing capitula were found to have earlier style elongation, pollen presentation and pollinator visits compared with capitula manipulated to face west. East-facing capitula also sired more offspring than west-facing capitula and under some conditions produced heavier and better-filled seeds. Local ambient temperature change on the capitulum was found to be a key factor regulating the timing of style elongation, pollen emergence and pollinator visits. These results indicate that eastward capitulum orientation helps to control daily rhythms in floral temperature, with direct consequences on the timing of style elongation and pollen emergence, pollinator visitation, and plant fitness.


Subject(s)
Helianthus , Pollination , Flowers , Pollen , Temperature
3.
Science ; 353(6299): 587-90, 2016 Aug 05.
Article in English | MEDLINE | ID: mdl-27493185

ABSTRACT

Young sunflower plants track the Sun from east to west during the day and then reorient during the night to face east in anticipation of dawn. In contrast, mature plants cease movement with their flower heads facing east. We show that circadian regulation of directional growth pathways accounts for both phenomena and leads to increased vegetative biomass and enhanced pollinator visits to flowers. Solar tracking movements are driven by antiphasic patterns of elongation on the east and west sides of the stem. Genes implicated in control of phototropic growth, but not clock genes, are differentially expressed on the opposite sides of solar tracking stems. Thus, interactions between environmental response pathways and the internal circadian oscillator coordinate physiological processes with predictable changes in the environment to influence growth and reproduction.


Subject(s)
Circadian Rhythm/physiology , Flowers/physiology , Helianthus/growth & development , Phototropism/physiology , Pollination , Animals , Circadian Clocks/genetics , Circadian Clocks/physiology , Circadian Rhythm/genetics , Flowers/genetics , Gene Expression Regulation, Developmental , Gene Expression Regulation, Plant , Helianthus/genetics , Phototropism/genetics , Sunlight
4.
Front Plant Sci ; 4: 325, 2013 Aug 29.
Article in English | MEDLINE | ID: mdl-24009617

ABSTRACT

The current status of lignocellulosic biomass as an invaluable resource in industry, agriculture, and health has spurred increased interest in understanding the transcriptional regulation of secondary cell wall (SCW) biosynthesis. The last decade of research has revealed an extensive network of NAC, MYB and other families of transcription factors regulating Arabidopsis SCW biosynthesis, and numerous studies have explored SCW-related transcription factors in other dicots and monocots. Whilst the general structure of the Arabidopsis network has been a topic of several reviews, they have not comprehensively represented the detailed protein-DNA and protein-protein interactions described in the literature, and an understanding of network dynamics and functionality has not yet been achieved for SCW formation. Furthermore the methodologies employed in studies of SCW transcriptional regulation have not received much attention, especially in the case of non-model organisms. In this review, we have reconstructed the most exhaustive literature-based network representations to date of SCW transcriptional regulation in Arabidopsis. We include a manipulable Cytoscape representation of the Arabidopsis SCW transcriptional network to aid in future studies, along with a list of supporting literature for each documented interaction. Amongst other topics, we discuss the various components of the network, its evolutionary conservation in plants, putative modules and dynamic mechanisms that may influence network function, and the approaches that have been employed in network inference. Future research should aim to better understand network function and its response to dynamic perturbations, whilst the development and application of genome-wide approaches such as ChIP-seq and systems genetics are in progress for the study of SCW transcriptional regulation in non-model organisms.

5.
Planta ; 237(3): 799-812, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23132521

ABSTRACT

The increasing focus on plantation forestry as a renewable source of cellulosic biomass has emphasized the need for tools to study the unique biology of woody genera such as Eucalyptus, Populus and Pinus. The domestication of these woody crops is hampered by long generation times, and breeders are now looking to molecular approaches such as marker-assisted breeding and genetic modification to accelerate tree improvement. Much of what is known about genes involved in the growth and development of plants has come from studies of herbaceous models such as Arabidopsis and rice. However, transferring this information to woody plants often proves difficult, especially for genes expressed in woody stems. Here we report the use of induced somatic sector analysis (ISSA) for characterization of promoter expression patterns directly in the stems of Populus and Eucalyptus trees. As a case study, we used previously characterized primary and secondary cell wall-related cellulose synthase (CesA) promoters cloned from Eucalyptus grandis. We show that ISSA can be used to elucidate the phloem and xylem expression patterns of the CesA genes in Eucalyptus and Populus stems and also show that the staining patterns differ in Eucalyptus and Populus stems. These findings show that ISSA is an efficient approach to investigate promoter function in the developmental context of woody plant tissues and raise questions about the suitability of heterologous promoters for genetic manipulation in plant species.


Subject(s)
Genetic Techniques , Glucosyltransferases/genetics , Plant Stems/enzymology , Plant Stems/genetics , Promoter Regions, Genetic , Wood/enzymology , Wood/genetics , Arabidopsis/enzymology , Arabidopsis/genetics , Eucalyptus/enzymology , Eucalyptus/genetics , Eucalyptus/growth & development , Gene Expression Regulation, Plant , Genes, Plant/genetics , Glucuronidase/metabolism , Plants, Genetically Modified , Populus/enzymology , Populus/genetics , Populus/growth & development , Species Specificity , Staining and Labeling , Time Factors , Transformation, Genetic
6.
Tree Physiol ; 26(3): 365-75, 2006 Mar.
Article in English | MEDLINE | ID: mdl-16356907

ABSTRACT

Despite the availability of high-throughput transcript profiling technology, little is known about tissue-specific gene expression patterns in the wood-forming tissues of Eucalyptus plantation tree species. We used cDNA-amplified fragment length polymorphism (AFLP) analysis in combination with infrared fragment detection and semi-automated band quantification to profile gene expression in a 6-year-old, fast- growing Eucalyptus tree. The expression profiles of 6385 transcript-derived fragments (TDFs) were analyzed across four major woody tissues (mature xylem, immature xylem, phloem and cork) collected from two stem positions, to provide a global view of transcript abundance and variability in the Eucalyptus stem. About 21% of the TDFs were differentially expressed and could be grouped into clusters representing co- expressed genes. A total of 71 TDFs representing different gene clusters were isolated and characterized. These included genes implicated in cell fate, signal transduction and cell wall biosynthesis, processes closely associated with xylogenesis. Analysis of the expression levels of selected TDFs by quantitative RT-PCR corroborated the TDF quantification and confirmed that cDNA-AFLP analysis is a highly efficient and accurate tool for transcript profiling and gene discovery in wood-forming tissues of tree species.


Subject(s)
Eucalyptus/growth & development , Eucalyptus/genetics , Gene Expression Profiling , Gene Expression Regulation, Plant , Transcription, Genetic , Trees/genetics , Wood/genetics , Cluster Analysis , DNA, Complementary/metabolism , DNA, Plant/metabolism , Genes, Plant , Genome, Plant , Polymorphism, Genetic , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA, Plant/metabolism , Reverse Transcriptase Polymerase Chain Reaction
SELECTION OF CITATIONS
SEARCH DETAIL
...