Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
J Neurophysiol ; 125(3): 862-874, 2021 03 01.
Article in English | MEDLINE | ID: mdl-33656927

ABSTRACT

In humans, practically all movements are learnt and performed in a constant gravitational field. Yet, studies on arm movements and object manipulation in parabolic flight have highlighted very fast sensorimotor adaptations to altered gravity environments. Here, we wondered if the motor adjustments observed in those altered gravity environments could also be observed on Earth in a situation where the body is upside-down. To address this question, we asked participants to perform rhythmic arm movements in two different body postures (right-side-up and upside-down) while holding an object in precision grip. Analyses of grip-load force coordination and of movement kinematics revealed distinct adaptation patterns between grip and arm control. Grip force and load force were tightly synchronized from the first movements performed in upside-down posture, reflecting a malleable allocentric grip control. In contrast, velocity profiles showed a more progressive adaptation to the upside-down posture and reflected an egocentric planning of arm kinematics. In addition to suggesting distinct mechanisms between grip dynamics and arm kinematics for adaptation to novel contexts, these results also suggest the existence of general mechanisms underlying gravity-dependent motor adaptation that can be used for fast sensorimotor coordination across different postures on Earth and, incidentally, across different gravitational conditions in parabolic flights, in human centrifuges, or in Space.NEW & NOTEWORTHY During rhythmic arm movements performed in an upside-down posture, grip control adapted very quickly, but kinematics adaptation was more progressive. Our results suggest that grip control and movement kinematics planning might operate in different reference frames. Moreover, by comparing our results with previous results from parabolic flight studies, we propose that a common mechanism underlies adaptation to unfamiliar body postures and adaptation to altered gravity.


Subject(s)
Adaptation, Physiological/physiology , Arm/physiology , Biomechanical Phenomena/physiology , Hand Strength/physiology , Posture/physiology , Weightlessness , Adult , Female , Humans , Male , Movement/physiology , Young Adult
2.
J Neurophysiol ; 124(1): 4-19, 2020 07 01.
Article in English | MEDLINE | ID: mdl-32348686

ABSTRACT

Humans excel at learning complex tasks, and elite performers such as musicians or athletes develop motor skills that defy biomechanical constraints. All actions require the movement of massive bodies. Of particular interest in the process of sensorimotor learning and control is the impact of gravitational forces on the body. Indeed, efficient control and accurate internal representations of the body configuration in space depend on our ability to feel and anticipate the action of gravity. Here we review studies on perception and sensorimotor control in both normal and altered gravity. Behavioral and modeling studies together suggested that the nervous system develops efficient strategies to take advantage of gravitational forces across a wide variety of tasks. However, when the body was exposed to altered gravity, the rate and amount of adaptation exhibited substantial variation from one experiment to another and sometimes led to partial adjustment only. Overall, these results support the hypothesis that the brain uses a multimodal and flexible representation of the effect of gravity on our body and movements. Future work is necessary to better characterize the nature of this internal representation and the extent to which it can adapt to novel contexts.


Subject(s)
Adaptation, Physiological/physiology , Gravitation , Gravity Sensing/physiology , Motion Perception/physiology , Motor Activity/physiology , Proprioception/physiology , Space Perception/physiology , Humans
3.
Neural Comput ; 31(4): 738-764, 2019 04.
Article in English | MEDLINE | ID: mdl-30764738

ABSTRACT

Compensating for sensorimotor noise and for temporal delays has been identified as a major function of the nervous system. Although these aspects have often been described separately in the frameworks of optimal cue combination or motor prediction during movement planning, control-theoretic models suggest that these two operations are performed simultaneously, and mounting evidence supports that motor commands are based on sensory predictions rather than sensory states. In this letter, we study the benefit of state estimation for predictive sensorimotor control. More precisely, we combine explicit compensation for sensorimotor delays and optimal estimation derived in the context of Kalman filtering. We show, based on simulations of human-inspired eye and arm movements, that filtering sensory predictions improves the stability margin of the system against prediction errors due to low-dimensional predictions or to errors in the delay estimate. These simulations also highlight that prediction errors qualitatively account for a broad variety of movement disorders typically associated with cerebellar dysfunctions. We suggest that adaptive filtering in cerebellum, instead of often-assumed feedforward predictions, may achieve simple compensation for sensorimotor delays and support stable closed-loop control of movements.


Subject(s)
Feedback, Sensory , Models, Neurological , Motor Activity , Algorithms , Computer Simulation , Eye , Feedback, Sensory/physiology , Hand/physiology , Humans , Motor Activity/physiology , Movement/physiology
4.
Hum Mov Sci ; 55: 31-42, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28750259

ABSTRACT

Long-range autocorrelations (LRA) are a robust feature of rhythmic movements, which may provide important information about neural control and potentially constitute a powerful marker of dysfunction. A clear difficulty associated with the assessment of LRA is that it requires a large number of cycles to generate reliable results. Here we investigate how series length impacts the reliability of LRA assessment. A total of 94 time series extracted from walking or cycling tasks were re-assessed with series length varying from 64 to 512 data points. LRA were assessed using an approach combining the rescaled range analysis or the detrended fluctuation analysis (Hurst exponent, H), along with the shape of the power spectral density (α exponent). The statistical precision was defined as the ability to obtain estimates for H and α that are consistent with their theoretical relationship, irrespective of the series length. The sensitivity consisted of testing whether significant differences between experimental conditions found in the original studies when considering 512 data points persisted with shorter series. We also investigate the use of evenly-spaced diffusion plots as a methodological improvement of original version of methods for short series. Our results show that the reliable assessment of LRA requires 512 data points, or no shorter than 256 data points provided that more robust methods are considered such as the evenly-spaced algorithms. Such series can be reasonably obtained in clinical populations with moderate, or even more severe, gait impairments and open the perspective to extend the use of LRA assessment as a marker of gait stability applicable to a broad range of locomotor disorders.


Subject(s)
Bicycling/physiology , Walking/physiology , Algorithms , Bicycling/statistics & numerical data , Cognition/physiology , Gait/physiology , Healthy Volunteers , Humans , Locomotion/physiology , Psychological Tests , Reproducibility of Results , Walking/statistics & numerical data , Young Adult
5.
J Neurophysiol ; 118(1): 331-343, 2017 07 01.
Article in English | MEDLINE | ID: mdl-28468992

ABSTRACT

Tactile and muscle afferents provide critical sensory information for grasp control, yet the contribution of each sensory system during online control has not been clearly identified. More precisely, it is unknown how these two sensory systems participate in online control of digit forces following perturbations to held objects. To address this issue, we investigated motor responses in the context of fingertip loading, which parallels the impact of perturbations to held objects on finger motion and fingerpad deformation, and characterized surface recordings of intrinsic (first dorsal interosseous, FDI) and extrinsic (flexor digitorum superficialis, FDS) hand muscles based on statistical modeling. We designed a series of experiments probing the effects of peripheral stimulation with or without anesthesia of the finger, and of task instructions. Loading of the fingertip generated a motor response in FDI at ~60 ms following the perturbation onset, which was only driven by muscle stretch, as the ring-block anesthesia reduced the gain of the response occurring later than 90 ms, leaving responses occurring before this time unaffected. In contrast, the motor response in FDS was independent of the lateral motion of the finger. This response started at ~90 ms on average and was immediately adjusted to task demands. Altogether these results highlight how a rapid integration of partially distinct sensorimotor circuits supports rapid motor responses to fingertip loading.NEW & NOTEWORTHY To grasp and manipulate objects, the brain uses touch signals related to skin deformation as well as sensory information about motion of the fingers encoded in muscle spindles. Here we investigated how these two sensory systems contribute to feedback responses to perturbation applied to the fingertip. We found distinct response components, suggesting that each sensory system engages separate sensorimotor circuits with distinct functions and latencies.


Subject(s)
Fingers/innervation , Movement , Touch Perception , Adult , Evoked Potentials, Motor , Female , Fingers/physiology , Humans , Male , Muscle, Skeletal/innervation , Muscle, Skeletal/physiology
6.
Exp Brain Res ; 233(11): 3323-32, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26265124

ABSTRACT

A hallmark of movement control expressed by healthy humans is the ability to gradually improve motor performance through learning. In the context of object manipulation, previous work has shown that the presence of a torque load has a direct impact on grip-force control, characterized by a significantly slower grip-force adjustment across lifting movements. The origin of this slower adaptation rate remains unclear. On the one hand, information about tangential constraints during stationary holding may be difficult to extract in the presence of a torque. On the other hand, inertial torque experienced during movement may also potentially disrupt the grip-force adjustments, as the dynamical constraints clearly differ from the situation when no torque load is present. To address the influence of inertial torque loads, we instructed healthy adults to perform visually guided reaching movements in weightlessness while holding an unbalanced object relative to the grip axis. Weightlessness offered the possibility to remove gravitational constraints and isolate the effect of movement-related feedback on grip force adjustments. Grip-force adaptation rates were compared with a control group who manipulated a balanced object without any torque load and also in weightlessness. Our results clearly show that grip-force adaptation in the presence of a torque load is significantly slower, which suggests that the presence of torque loads experienced during movement may alter our internal estimates of how much force is required to hold an unbalanced object stable. This observation may explain why grasping objects around the expected location of the center of mass is such an important component of planning and control of manipulation tasks.


Subject(s)
Adaptation, Physiological/physiology , Hand Strength/physiology , Movement/physiology , Orientation/physiology , Torque , Weightlessness , Adult , Analysis of Variance , Female , Humans , Male , Middle Aged , Nonlinear Dynamics , Psychophysics , Young Adult
8.
J Neurophysiol ; 112(2): 384-92, 2014 Jul 15.
Article in English | MEDLINE | ID: mdl-24790173

ABSTRACT

Moving requires handling gravitational and inertial constraints pulling on our body and on the objects that we manipulate. Although previous work emphasized that the brain uses internal models of each type of mechanical load, little is known about their interaction during motor planning and execution. In this report, we examine visually guided reaching movements in the horizontal plane performed by naive participants exposed to changes in gravity during parabolic flight. This approach allowed us to isolate the effect of gravity because the environmental dynamics along the horizontal axis remained unchanged. We show that gravity has a direct effect on movement kinematics, with faster movements observed after transitions from normal gravity to hypergravity (1.8g), followed by significant movement slowing after the transition from hypergravity to zero gravity. We recorded finger forces applied on an object held in precision grip and found that the coupling between grip force and inertial loads displayed a similar effect, with an increase in grip force modulation gain under hypergravity followed by a reduction of modulation gain after entering the zero-gravity environment. We present a computational model to illustrate that these effects are compatible with the hypothesis that participants partially attribute changes in weight to changes in mass and scale incorrectly their motor commands with changes in gravity. These results highlight a rather direct internal mapping between the force generated during stationary holding against gravity and the estimation of inertial loads that limb and hand motor commands must overcome.


Subject(s)
Fingers/physiology , Gravitation , Movement , Weight Perception , Biomechanical Phenomena , Hand Strength , Humans , Models, Neurological
9.
J Neurophysiol ; 110(6): 1323-32, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23825396

ABSTRACT

Healthy subjects can easily produce voluntary actions at different speeds and with varying accuracy requirements. It remains unknown whether rapid corrective responses to mechanical perturbations also possess this flexibility and, thereby, contribute to the capability expressed in voluntary control. Paralleling previous studies on self-initiated movements, we examined how muscle activity was impacted by either implicit or explicit criteria affecting the urgency to respond to the perturbation. Participants maintained their arm position against torque perturbations with unpredictable timing and direction. In the first experiment, the urgency to respond was explicitly altered by varying the time limit (300 ms vs. 700 ms) to return to a small target. A second experiment addresses implicit urgency criteria by varying the radius of the goal target, such that task accuracy could be achieved with less vigorous corrections for large targets than small target. We show that muscle responses at ∼60 ms scaled with the task demand. Moreover, in both experiments, we found a strong intertrial correlation between long-latency responses (∼50-100 ms) and the movement reversal times, which emphasizes that these rapid motor responses are directly linked to behavioral performance. The slopes of these linear regressions were sensitive to the experimental condition during the long-latency and early voluntary epochs. These findings suggest that feedback gains for very rapid responses are flexibly scaled according to task-related urgency.


Subject(s)
Feedback, Sensory , Muscle, Skeletal/physiology , Psychomotor Performance , Adult , Arm/physiology , Female , Humans , Male , Middle Aged , Reaction Time , Torque
11.
Neuroscience ; 210: 234-42, 2012 May 17.
Article in English | MEDLINE | ID: mdl-22421102

ABSTRACT

Stride duration variability is considered a marker of gait balance and can be investigated in at least two different ways. Fluctuation magnitude can be addressed by classical mathematical methods, whereas fluctuation dynamics between strides can be characterized using the autocorrelation function. Although each approach has revealed changes of these parameters in different age-groups, most studies have focused on spontaneous walking speeds, which vary across groups and is described as a possible confounder in the assessment of stride duration variability. In the present study, the influence of speed on stride duration fluctuations was first analyzed in six young adults walking at six different speeds on a treadmill. Second, the results of 18 subjects from three different age-groups (≈5, 25, and 75 years old) were compared to assess the effect of age on the same variables at three different speeds. Fluctuation dynamics was evaluated, thanks to combined mathematical methods recently validated in the context of physiological time series, to increase the level of confidence in the results. Fluctuation magnitude was assessed by coefficients of variation (CV) on the same and large number of 512 gait strides, to enhance the validity of comparisons between both parameters. Long-range autocorrelations were highlighted in all time series, and characteristics were not influenced by gait speed and age of the participants. This suggests that the dynamics of variability is efficient for comparing subjects presenting with different spontaneous speed, and supports the hypothesis that long-range variability of human gait reflects a centrally controlled behavior. In contrast, CV was inversely related to walking speed and the age of the subjects. Slower speeds increased CV values, and fluctuation magnitude was also significantly larger for children compared with young and old adults. This confirms that fluctuation magnitude and dynamics could be complementary tools for more complete gait characterization.


Subject(s)
Aging/physiology , Gait/physiology , Walking/physiology , Aged , Child, Preschool , Female , Humans , Male , Young Adult
12.
J Neurophysiol ; 107(10): 2821-32, 2012 May.
Article in English | MEDLINE | ID: mdl-22357792

ABSTRACT

A wealth of studies highlight the importance of rapid corrective responses during voluntary motor tasks. These studies used relatively large perturbations to evoke robust muscle activity. Thus it remains unknown whether these corrective responses (latency 20-100 ms) are evoked at perturbation levels approaching the inherent variability of voluntary control. To fill this gap, we examined responses for large to small perturbations applied while participants either performed postural or reaching tasks. To address multijoint corrective responses, we induced various amounts of single-joint elbow motion with scaled amounts of combined elbow and shoulder torques. Indeed, such perturbations are known to elicit a response at the unstretched shoulder muscle, which reflects an internal model of arm intersegmental dynamics. Significant muscle responses were observed during both postural control and reaching, even when perturbation-related joint angle, velocity, and acceleration overlapped in distribution with deviations encountered in unperturbed trials. The response onsets were consistent across the explored range of perturbation loads, with short-latency onset for the muscles spanning the elbow joints (20-40 ms), and long-latency for shoulder muscles (onset > 45 ms). In addition, the evoked activity was strongly modulated by perturbation magnitude. These results suggest that multijoint responses are not specifically engaged to counter motor errors that exceed a certain threshold. Instead, we suggest that these corrective processes operate continuously during voluntary motor control.


Subject(s)
Motor Activity/physiology , Movement/physiology , Muscle, Skeletal/physiology , Postural Balance/physiology , Posture/physiology , Adolescent , Adult , Biomechanical Phenomena/physiology , Elbow/physiology , Elbow Joint/physiology , Electromyography , Female , Humans , Male , Shoulder/physiology , Shoulder Joint/physiology , Torque
13.
J Neurophysiol ; 106(6): 2973-81, 2011 Dec.
Article in English | MEDLINE | ID: mdl-21940610

ABSTRACT

Manipulating a cup by the handle requires compensating for the torque induced by the moment of the mass of the cup relative to the location of the handle. In the present study, we investigated the control strategy of subjects asked to perform grip-lift movements with an object with center of mass located away from the grip axis. Participants were asked to lift the manipulandum with a two-fingers precision grip and stabilize it in front of a visual target. Subjects showed a gradual and slow adaptation of the grip-force scaling across trials: the grip force tended to decrease slowly, and the temporal coordination between grip-force and load-torque rates displayed gradually, better-coordinated patterns. Importantly, this adaptation was much slower than the stabilization of the same parameters measured either when no torque came into play or after previous adaptation to the presence of a torque. In contrast, the maximum rotation induced by the torque was controlled efficiently after only few trials, and an unexpected decrease in the tangential torque produced significant overcompensation. An unexpected increase in torque produced a consistent opposite effect. This shows that the compensation for the dynamic torque was based on an anticipatory, dynamic counter-torque produced by the arm and wrist motor commands. The comparatively slow stabilization of grip-force control suggests a specific adaptation process engaged by the presence of the torque. This paradigm, including tangential torques, clearly constitutes a powerful tool to extract the adaptive component of grip control during object manipulation.


Subject(s)
Adaptation, Physiological/physiology , Hand Strength/physiology , Movement/physiology , Psychomotor Performance/physiology , Torque , Adult , Female , Fingers , Humans , Lifting , Male , Middle Aged , Psychophysics , Young Adult
14.
J Neurosci Methods ; 192(1): 163-72, 2010 Sep 30.
Article in English | MEDLINE | ID: mdl-20654647

ABSTRACT

Series of motor outputs generated by cyclic movements are typically complex, suggesting that the correlation function of the time series spans over a large number of consecutive samples. Famous examples include inter-stride intervals, heartbeat variability, spontaneous neural firing patterns or motor synchronization with external pacing. Long-range correlations are potentially important for fundamental research, as the neural and biomechanical mechanisms generating these correlations remain unknown, and for clinical applications, given that the loss of long-range correlation may be a marker of disease. However, no systematic approach or robust analysis methods have yet been used to support the study of correlation functions in physiological series. This study investigates four selected methods (the Hurst exponent, the power spectral density analysis, the rate of moment convergence and the multiscale entropy methods). We present the result of each analysis performed on artificial computer-generated series in which the auto-correlation function is known, and then on time series extracted from gait and upper limb rhythmic movements. Our results suggest that combined analysis using the Hurst exponent and the power spectral density is suitable for rather short series (512 points). The rate of moment convergence directly supports the power spectral density analysis, and the multiscale entropy further confirms the presence of long-range correlation, although this method seems more appropriate for longer series. The proposed methodology increases the level of confidence in the hypothesis that physiological series are long-memory processes, which is of prime importance for future fundamental and clinical research.


Subject(s)
Gait/physiology , Memory/physiology , Movement/physiology , Signal Processing, Computer-Assisted , Upper Extremity/physiology , Computer Simulation , Entropy , Humans , Spectrum Analysis , Time Factors
15.
J Neurophysiol ; 104(3): 1301-13, 2010 Sep.
Article in English | MEDLINE | ID: mdl-20554851

ABSTRACT

Sensory noise and feedback delay are potential sources of instability and variability for the on-line control of movement. It is commonly assumed that predictions based on internal models allow the CNS to anticipate the consequences of motor actions and protect the movements from uncertainty and instability. However, during motor learning and exposure to unknown dynamics, these predictions can be inaccurate. Therefore a distinct strategy is necessary to preserve movement stability. This study tests the hypothesis that in such situations, subjects adapt the speed and accuracy constraints on the movement, yielding a control policy that is less prone to undesirable variability in the outcome. This hypothesis was tested by asking subjects to hold a manipulandum in precision grip and to perform single-joint, discrete arm rotations during short-term exposure to weightlessness (0 g), where the internal models of the limb dynamics must be updated. Measurements of grip force adjustments indicated that the internal predictions were altered during early exposure to the 0 g condition. Indeed, the grip force/load force coupling reflected that the grip force was less finely tuned to the load-force variations at the beginning of the exposure to the novel gravitational condition. During this learning period, movements were slower with asymmetric velocity profiles and target undershooting. This effect was compared with theoretical results obtained in the context of optimal feedback control, where changing the movement objective can be directly tested by adjusting the cost parameters. The effect on the simulated movements quantitatively supported the hypothesis of a change in cost function during early exposure to a novel environment. The modified optimization criterion reduces the trial-to-trial variability in spite of the fact that noise affects the internal prediction. These observations support the idea that the CNS adjusts the movement objective to stabilize the movement when internal models are uncertain.


Subject(s)
Hand Strength/physiology , Models, Biological , Movement/physiology , Psychomotor Performance/physiology , Adult , Female , Humans , Male , Middle Aged
16.
Neuroscience ; 161(2): 589-98, 2009 Jun 30.
Article in English | MEDLINE | ID: mdl-19303921

ABSTRACT

In this experiment, we investigated whether the CNS uses internal forward models of inertial loads to maintain the stability of a precision grip when manipulating objects in the absence of gravity. The micro-gravity condition causes profound changes in the profile of tangential constraints at the finger-object interface. In order to assess the ability to predict the micro-gravity-specific variation of inertial loads, we analyzed the grip force adjustments that occurred when naive subjects held an object in a precision grip and performed point-to-point movements under the weightless condition induced by parabolic flight. Such movements typically presented static and dynamic phases, which permitted distinction between a static component of the grip force (measured before the movement) and a dynamic component of the grip force (measured during the movement). The static component tended to gradually decrease across the parabolas, whereas the dynamic component was rapidly modulated with the micro-gravity-specific inertial loads. In addition, the amplitude of the modulation significantly correlated with the amplitude of the tangential constraints for the dynamic component. These results strongly support the hypothesis that the internal representation of arm and object dynamics adapts to new gravitational contexts. In addition, the difference in time scales of adaptation of static and dynamic components suggests that they can be processed independently. The prediction of self-induced variation of inertial loads permits fine modulation of grip force, which ensures a stable grip during manipulation of an object in a new environment.


Subject(s)
Movement , Weight-Bearing , Weightlessness , Adult , Hand Strength , Humans , Linear Models , Models, Biological , Time Factors , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...