Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
J Int Soc Sports Nutr ; 14: 20, 2017.
Article in English | MEDLINE | ID: mdl-28642676

ABSTRACT

The International Society of Sports Nutrition (ISSN) provides an objective and critical review related to the intake of protein for healthy, exercising individuals. Based on the current available literature, the position of the Society is as follows:An acute exercise stimulus, particularly resistance exercise, and protein ingestion both stimulate muscle protein synthesis (MPS) and are synergistic when protein consumption occurs before or after resistance exercise.For building muscle mass and for maintaining muscle mass through a positive muscle protein balance, an overall daily protein intake in the range of 1.4-2.0 g protein/kg body weight/day (g/kg/d) is sufficient for most exercising individuals, a value that falls in line within the Acceptable Macronutrient Distribution Range published by the Institute of Medicine for protein.Higher protein intakes (2.3-3.1 g/kg/d) may be needed to maximize the retention of lean body mass in resistance-trained subjects during hypocaloric periods.There is novel evidence that suggests higher protein intakes (>3.0 g/kg/d) may have positive effects on body composition in resistance-trained individuals (i.e., promote loss of fat mass).Recommendations regarding the optimal protein intake per serving for athletes to maximize MPS are mixed and are dependent upon age and recent resistance exercise stimuli. General recommendations are 0.25 g of a high-quality protein per kg of body weight, or an absolute dose of 20-40 g.Acute protein doses should strive to contain 700-3000 mg of leucine and/or a higher relative leucine content, in addition to a balanced array of the essential amino acids (EAAs).These protein doses should ideally be evenly distributed, every 3-4 h, across the day.The optimal time period during which to ingest protein is likely a matter of individual tolerance, since benefits are derived from pre- or post-workout ingestion; however, the anabolic effect of exercise is long-lasting (at least 24 h), but likely diminishes with increasing time post-exercise.While it is possible for physically active individuals to obtain their daily protein requirements through the consumption of whole foods, supplementation is a practical way of ensuring intake of adequate protein quality and quantity, while minimizing caloric intake, particularly for athletes who typically complete high volumes of training. Rapidly digested proteins that contain high proportions of essential amino acids (EAAs) and adequate leucine, are most effective in stimulating MPS. Different types and quality of protein can affect amino acid bioavailability following protein supplementation. Athletes should consider focusing on whole food sources of protein that contain all of the EAAs (i.e., it is the EAAs that are required to stimulate MPS). Endurance athletes should focus on achieving adequate carbohydrate intake to promote optimal performance; the addition of protein may help to offset muscle damage and promote recovery. Pre-sleep casein protein intake (30-40 g) provides increases in overnight MPS and metabolic rate without influencing lipolysis.


Subject(s)
Dietary Proteins/administration & dosage , Exercise , Nutritional Requirements , Sports Nutritional Sciences/standards , Amino Acids, Essential/administration & dosage , Athletes , Athletic Performance , Body Composition , Body Weight , Humans , Leucine/administration & dosage
2.
J Int Soc Sports Nutr ; 7: 30, 2010 Sep 22.
Article in English | MEDLINE | ID: mdl-20860817

ABSTRACT

BACKGROUND: We examined the effects of short-term consumption of whey protein isolate on muscle proteins and force recovery after eccentrically-induced muscle damage in healthy individuals. METHODS: Seventeen untrained male participants (23 ± 5 yr, 180 ± 6 cm, 80 ± 11 kg) were randomly separated into two supplement groups: i) whey protein isolate (WPH; n = 9); or ii) carbohydrate (CHO; n = 8). Participants consumed 1.5 g/kg.bw/day supplement (~30 g consumed immediately, and then once with breakfast, lunch, in the afternoon and after the evening meal) for a period of 14 days following a unilateral eccentric contraction-based resistance exercise session, consisting of 4 sets of 10 repetitions at 120% of maximum voluntary contraction on the leg press, leg extension and leg flexion exercise machine. Plasma creatine kinase and lactate dehydrogenase (LDH) levels were assessed as blood markers of muscle damage. Muscle strength was examined by voluntary isokinetic knee extension using a Cybex dynamometer. Data were analyzed using repeated measures ANOVA with an alpha of 0.05. RESULTS: Isometric knee extension strength was significantly higher following WPH supplementation 3 (P < 0.05) and 7 (P < 0.01) days into recovery from exercise-induced muscle damage compared to CHO supplementation. In addition, strong tendencies for higher isokinetic forces (extension and flexion) were observed during the recovery period following WPH supplementation, with knee extension strength being significantly greater (P < 0.05) after 7 days recovery. Plasma LDH levels tended to be lower (P = 0.06) in the WPH supplemented group during recovery. CONCLUSIONS: The major finding of this investigation was that whey protein isolate supplementation attenuated the impairment in isometric and isokinetic muscle forces during recovery from exercise-induced muscle injury.

3.
J Int Soc Sports Nutr ; 6: 13, 2009 Jun 02.
Article in English | MEDLINE | ID: mdl-19490606

ABSTRACT

BACKGROUND: Eccentric exercise-induced damage leads to reductions in muscle force, increased soreness, and impaired muscle function. Creatine monohydrate's (Cr) ergogenic potential is well established; however few studies have directly examined the effects of Cr supplementation on recovery after damage. We examined the effects of Cr supplementation on muscle proteins and force recovery after eccentrically-induced muscle damage in healthy individuals. METHODS: Fourteen untrained male participants (22.1 +/- 2.3 yrs, 173 +/- 7.7 cm, 76.2 +/- 9.3 kg) were randomly separated into 2 supplement groups: i) Cr and carbohydrate (Cr-CHO; n = 7); or ii) carbohydrate (CHO; n = 7). Participants consumed their supplement for a period of 5 days prior to, and 14 days following a resistance exercise session. Participants performed 4 sets of 10 eccentric-only repetitions at 120% of their maximum concentric 1-RM on the leg press, leg extension and leg flexion exercise machine. Plasma creatine kinase (CK) and lactate dehydrogenase (LDH) activity were assessed as relevant blood markers of muscle damage. Muscle strength was examined by voluntary isokinetic knee extension using a Cybex dynamometer. Data were analyzed using repeated measures ANOVA with an alpha of 0.05. RESULTS: The Cr-supplemented group had significantly greater isokinetic (10% higher) and isometric (21% higher) knee extension strength during recovery from exercise-induced muscle damage. Furthermore, plasma CK activity was significantly lower (by an average of 84%) after 48 hrs (P < 0.01), 72 hrs (P < 0.001), 96 hrs (P < 0.0001), and 7 days (P < 0.001) recovery in the Cr-supplemented group. CONCLUSION: The major finding of this investigation was a significant improvement in the rate of recovery of knee extensor muscle function after Cr supplementation following injury.

4.
J Strength Cond Res ; 22(2): 464-70, 2008 Mar.
Article in English | MEDLINE | ID: mdl-18550961

ABSTRACT

Caffeine and ephedrine-related alkaloids recently have been removed from International Olympic Committee banned substances lists, whereas ephedrine itself is now permissible at urinary concentrations less than 10 mug.mL. The changes to the list may contribute to an increased use of caffeine and ephedra as ergogenic aids by athletes. Consequently, we sought to investigate the effects of ingesting caffeine (C) or a combination of ephedra and caffeine (C + E) on muscular strength and anaerobic power using a double-blind, crossover design. Forty-five minutes after ingesting a glucose placebo (P: 300 mg), C (300 mg) or C + E (300 mg + 60 mg), 9 resistance-trained male participants were tested for maximal strength by bench press [BP; 1 repetition maximum (1RM)] and latissimus dorsi pull down (LP; 1RM). Subjects also performed repeated repetitions at 80% of 1RM on both BP and LP until exhaustion. After this test, subjects underwent a 30-second Wingate test to determine peak anaerobic cycling power, mean power, and fatigue index. Although subjects reported increased alertness and enhanced mood after supplementation with caffeine and ephedra, there were no significant differences between any of the treatments in muscle strength, muscle endurance, or peak anaerobic power. Our results do not support the contention that supplementation with ephedra or caffeine will enhance either muscle strength or anaerobic exercise performance.


Subject(s)
Caffeine/administration & dosage , Central Nervous System Stimulants/administration & dosage , Ephedra , Muscle Strength/drug effects , Phytotherapy , Adult , Cross-Over Studies , Double-Blind Method , Humans , Male , Physical Education and Training , Weight Lifting
5.
Curr Opin Clin Nutr Metab Care ; 11(1): 40-4, 2008 Jan.
Article in English | MEDLINE | ID: mdl-18090657

ABSTRACT

PURPOSE OF REVIEW: Sarcopenia (skeletal muscle wasting with aging) is thought to underlie a number of serious age-related health issues. While it may be seen as inevitable, decreasing this gradual loss of muscle is vital for healthy aging. Thus, it is imperative to investigate exercise and nutrition-based strategies designed to build a reservoir of muscle mass as early as possible. RECENT FINDINGS: Elderly individuals are still able to respond to both resistance training and the anabolic signals provided by protein ingestion, provided specific amino acids, such as leucine, are present. Whey proteins are a rich source of these essential amino acids and rapidly elevate plasma amino acids, thus providing the foundations for preservation of muscle mass. Several studies involving supplementation with whey protein have been shown to be effective in augmenting the effects of resistance exercise, particularly when supplementation occurs in the hours surrounding the exercise training. SUMMARY: While further work is required, particularly in elderly people, simple dietary and exercise strategies that may improve the maintenance of skeletal muscle mass will likely result in a decrease in the overall burden of a number of diseases and improve the quality of life as we age.


Subject(s)
Body Composition/drug effects , Milk Proteins/administration & dosage , Muscle Proteins/biosynthesis , Muscle Strength/drug effects , Weight Lifting/physiology , Aged , Aging , Body Composition/physiology , Dietary Supplements , Humans , Muscle Proteins/drug effects , Muscle Strength/physiology , Muscular Atrophy/prevention & control , Whey Proteins
6.
Med Sci Sports Exerc ; 39(11): 1960-8, 2007 Nov.
Article in English | MEDLINE | ID: mdl-17986903

ABSTRACT

PURPOSE: Studies attributing gains in strength and lean body mass (LBM) to creatine monohydrate (CrM) during resistance exercise (RE) training have not assessed these changes alongside cellular and subcellular adaptations. Additionally, CrM-treated groups have seldom been compared with a group receiving a placebo similar in nitrogen and energy. The purpose of this study was to examine the effects of a CrM-containing protein-carbohydrate (PRO-CHO) supplement in comparison with a supplement containing a similar amount of nitrogen and energy on body composition, muscle strength, fiber-specific hypertrophy, and contractile protein accrual during RE training. METHODS: In a double-blind, randomized protocol, resistance-trained males were matched for strength and placed into one of three groups: protein (PRO), PRO-CHO, or the same PRO-CHO supplement (1.5 g x kg(-1) body weight x d(-1)) containing CrM (Cr-PRO-CHO) (0.1 g x kg(-1) body weight x d(-1)). Assessments were completed the week before and after a 10-wk structured, supervised RE program: strength (1RM, three exercises), body composition (DEXA), and vastus lateralis muscle biopsies for determination of muscle fiber type (I, IIa, IIx), cross-sectional area (CSA), contractile protein, and creatine content. RESULTS: Cr-PRO-CHO provided greater improvements in 1RM strength. At least 40% of the strength improvements could be attributed to hypertrophy of muscle involved in this exercise. Cr-PRO-CHO also resulted in greater increases in LBM, fiber CSA, and contractile protein compared with PRO and PRO-CHO. CONCLUSIONS: In RE-trained participants, supplementation with Cr-PRO-CHO provided greater muscle hypertrophy than an equivalent dose of PRO-CHO, and this response was apparent at three levels of physiology (LBM, fiber CSA, and contractile protein content).


Subject(s)
Creatine/administration & dosage , Dietary Carbohydrates/administration & dosage , Dietary Proteins/administration & dosage , Dietary Supplements , Weight Lifting , Body Composition , Double-Blind Method , Humans , Male , Victoria
7.
Med Sci Sports Exerc ; 39(2): 298-307, 2007 Feb.
Article in English | MEDLINE | ID: mdl-17277594

ABSTRACT

PURPOSE: Studies that have attributed gains in lean body mass to dietary supplementation during resistance exercise (RE) training have not reported these changes alongside adaptations at the cellular and subcellular levels. Therefore, the purpose of this study was to examine the effects of two popular supplements--whey protein (WP) and creatine monohydrate (CrM) (both separately and in combination)--on body composition, muscle strength, fiber-specific hypertrophy (i.e., type I, IIa, IIx), and contractile protein accrual during RE training. METHODS: In a double-blind randomized protocol, resistance-trained males were matched for strength and placed into one of four groups: creatine/carbohydrate (CrCHO), creatine/whey protein (CrWP), WP only, or carbohydrate only (CHO) (1.5 g x kg(-1) body weight per day). All assessments were completed the week before and after an 11-wk structured, supervised RE program. Assessments included strength (1RM, three exercises), body composition (DEXA), and vastus lateralis muscle biopsies for determination of muscle fiber type (I, IIa, IIx), cross-sectional area (CSA), contractile protein, and creatine (Cr) content. RESULTS: Supplementation with CrCHO, WP, and CrWP resulted in significantly greater (P < 0.05) 1RM strength improvements (three of three assessments) and muscle hypertrophy compared with CHO. Up to 76% of the strength improvements in the squat could be attributed to hypertrophy of muscle involved in this exercise. However, the hypertrophy responses within these groups varied at the three levels assessed (i.e., changes in lean mass, fiber-specific hypertrophy, and contractile protein content). CONCLUSIONS: Although WP and/or CrM seem to promote greater strength gains and muscle morphology during RE training, the hypertrophy responses within the groups varied. These differences in skeletal muscle morphology may have important implications for various populations and, therefore, warrant further investigation.


Subject(s)
Contractile Proteins/drug effects , Creatine/pharmacology , Milk Proteins/pharmacology , Muscle Contraction/physiology , Muscle Fibers, Skeletal/drug effects , Muscle, Skeletal/drug effects , Weight Lifting/physiology , Adult , Dietary Supplements , Humans , Male , Muscle Contraction/drug effects , Muscle Fibers, Skeletal/physiology , Muscle, Skeletal/physiology , Whey Proteins
8.
Med Sci Sports Exerc ; 38(11): 1918-25, 2006 Nov.
Article in English | MEDLINE | ID: mdl-17095924

ABSTRACT

PURPOSE: Some studies report greater muscle hypertrophy during resistance exercise (RE) training from supplement timing (i.e., the strategic consumption of protein and carbohydrate before and/or after each workout). However, no studies have examined whether this strategy provides greater muscle hypertrophy or strength development compared with supplementation at other times during the day. The purpose of this study was to examine the effects of supplement timing compared with supplementation in the hours not close to the workout on muscle-fiber hypertrophy, strength, and body composition during a 10-wk RE program. METHODS: In a single-blind, randomized protocol, resistance-trained males were matched for strength and placed into one of two groups; the PRE-POST group consumed a supplement (1 g x kg(-1) body weight) containing protein/creatine/glucose immediately before and after RE. The MOR-EVE group consumed the same dose of the same supplement in the morning and late evening. All assessments were completed the week before and after 10 wk of structured, supervised RE training. Assessments included strength (1RM, three exercises), body composition (DEXA), and vastus lateralis muscle biopsies for determination of muscle fiber type (I, IIa, IIx), cross-sectional area (CSA), contractile protein, creatine (Cr), and glycogen content. RESULTS: PRE-POST demonstrated a greater (P < 0.05) increase in lean body mass and 1RM strength in two of three assessments. The changes in body composition were supported by a greater (P < 0.05) increase in CSA of the type II fibers and contractile protein content. PRE-POST supplementation also resulted in higher muscle Cr and glycogen values after the training program (P < 0.05). CONCLUSION: Supplement timing represents a simple but effective strategy that enhances the adaptations desired from RE-training.


Subject(s)
Dietary Supplements , Muscle, Skeletal/pathology , Physical Education and Training/methods , Absorptiometry, Photon , Adult , Biopsy, Needle , Body Composition , Contractile Proteins/metabolism , Creatine/metabolism , Glycogen/metabolism , Humans , Hypertrophy , Male , Muscle Fibers, Skeletal/metabolism , Muscle Fibers, Skeletal/pathology , Muscle Strength , Muscle, Skeletal/metabolism , Single-Blind Method
9.
Int J Sport Nutr Exerc Metab ; 16(5): 494-509, 2006 Oct.
Article in English | MEDLINE | ID: mdl-17240782

ABSTRACT

Different dietary proteins affect whole body protein anabolism and accretion and therefore, have the potential to influence results obtained from resistance training. This study examined the effects of supplementation with two proteins, hydrolyzed whey isolate (WI) and casein (C), on strength, body composition, and plasma glutamine levels during a 10 wk, supervised resistance training program. In a double-blind protocol, 13 male, recreational bodybuilders supplemented their normal diet with either WI or C (1.5 gm/kg body wt/d) for the duration of the program. Strength was assessed by 1-RM in three exercises (barbell bench press, squat, and cable pull-down). Body composition was assessed by dual energy X-ray absorptiometry. Plasma glutamine levels were determined by the enzymatic method with spectrophotometric detection. All assessments occurred in the week before and the week following 10 wk of training. Plasma glutamine levels did not change in either supplement group following the intervention. The WI group achieved a significantly greater gain (P < 0.01) in lean mass than the C group (5.0 +/- 0.3 vs. 0.8 +/- 0.4 kg for WI and C, respectively) and a significant (P < 0.05) change in fat mass (-1.5 +/- 0.5 kg) compared to the C group (+0.2 +/- 0.3 kg). The WI group also achieved significantly greater (P < 0.05) improvements in strength compared to the C group in each assessment of strength. When the strength changes were expressed relative to body weight, the WI group still achieved significantly greater (P < 0.05) improvements in strength compared to the C group.


Subject(s)
Body Composition/physiology , Dietary Proteins/administration & dosage , Glutamine/blood , Milk Proteins/administration & dosage , Muscle, Skeletal/metabolism , Weight Lifting/physiology , Adipose Tissue/metabolism , Adult , Body Composition/drug effects , Caseins/administration & dosage , Dietary Supplements , Double-Blind Method , Humans , Male , Muscle Strength/drug effects , Muscle Strength/physiology , Muscle, Skeletal/growth & development , Whey Proteins
SELECTION OF CITATIONS
SEARCH DETAIL
...