Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Brain Behav Immun ; 70: 246-256, 2018 05.
Article in English | MEDLINE | ID: mdl-29518530

ABSTRACT

Major depressive disorder (MDD) is one of the most common and debilitating neuropsychiatric illnesses. Accumulating evidence suggests a potential role of the immune system in the pathophysiology of MDD. The complement system represents one of the major effector mechanisms of the innate immune system, and plays a critical role in inflammation. However, the role of complement components in MDD is not well understood. Here, we found significant increase in component 3 (C3) expression in the prefrontal cortex (PFC) of depressed suicide subjects. We tested the role of altered C3 expression in mouse model of depression and found that increased C3 expression in PFC as a result of chronic stress causes depressive-like behavior. Conversely, mice lacking C3 were resilient to stress-induced depressive-like behavior. Moreover, selective overexpression of C3 in PFC was sufficient to cause depressive-like behavior in mice. We found that C3a (activated product of C3) receptor, C3aR+ monocytes were infiltrated into PFC following chronic stress. However, C3aR knockout mice displayed significantly reduced monocyte recruitment into PFC and reduced levels of the proinflammatory cytokine IL-1ß in PFC after chronic stress. In addition, C3aR knockout mice did not exhibit chronic stress-induced behavior despair. Similarly, chronic stress-induced increases in C3aR+ monocytes and IL-1ß in PFC, and depressive-like behavior were attenuated by myeloid cell depletion. These postmortem and preclinical studies identify C3aR signaling as a key factor in MDD pathophysiology.


Subject(s)
Depression/physiopathology , Depressive Disorder, Major/physiopathology , Receptors, Complement/physiology , Animals , Autopsy , Complement C3a/metabolism , Cytokines/metabolism , Depression/immunology , Depression/metabolism , Depressive Disorder, Major/immunology , Depressive Disorder, Major/metabolism , Disease Models, Animal , Humans , Inflammation/metabolism , Interleukin-1beta/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Monocytes/metabolism , Prefrontal Cortex/metabolism , Signal Transduction , Stress, Psychological/physiopathology
2.
Mol Neurobiol ; 55(9): 7606-7618, 2018 Sep.
Article in English | MEDLINE | ID: mdl-29430617

ABSTRACT

Impaired social interaction is a key feature of several major psychiatric disorders including depression, autism, and schizophrenia. While, anatomically, the prefrontal cortex (PFC) is known as a key regulator of social behavior, little is known about the cellular mechanisms that underlie impairments of social interaction. One etiological mechanism implicated in the pathophysiology of the aforementioned psychiatric disorders is cellular stress and consequent adaptive responses in the endoplasmic reticulum (ER) that can result from a variety of environmental and physical factors. The ER is an organelle that serves essential roles in protein modification, folding, and maturation of proteins; however, the specific role of ER stress in altered social behavior is unknown. In this study, treatment with tunicamycin, an ER stress inducer, enhanced the phosphorylation level of inositol-requiring ER-to-nucleus signal kinase 1 (IRE1) and increased X-box-binding protein 1 (XBP1) mRNA splicing activity in the mouse PFC, whereas inhibition of IRE1/XBP1 pathway in PFC by a viral particle approach attenuated social behavioral deficits caused by tunicamycin treatment. Reduced estrogen receptor beta (ERß) protein levels were found in the PFC of male mice following tunicamycin treatment. Pretreatment with an ERß specific agonist, ERB-041 significantly attenuated tunicamycin-induced deficits in social behavior, and activation of IRE1/XBP1 pathway in mouse PFC. Moreover, ERB-041 inhibited tunicamycin-induced increases in functional connectivity between PFC and hippocampus in male mice. Together, these results show that ERß agonist attenuates ER stress-induced deficits in social behavior through the IRE-1/XBP1 pathway.


Subject(s)
Brain/pathology , Brain/physiopathology , Endoplasmic Reticulum Stress , Estrogen Receptor beta/agonists , Nerve Net/physiopathology , Oxazoles/pharmacology , Social Behavior , Animals , Brain/drug effects , Estrogen Receptor beta/metabolism , Female , Hippocampus/drug effects , Hippocampus/pathology , Hippocampus/physiopathology , Male , Membrane Proteins/metabolism , Mice, Inbred C57BL , Nerve Net/drug effects , Prefrontal Cortex/drug effects , Prefrontal Cortex/pathology , Prefrontal Cortex/physiopathology , Protein Serine-Threonine Kinases/metabolism , Tunicamycin/pharmacology , X-Box Binding Protein 1/metabolism
3.
Neural Plast ; 2018: 2019091, 2018.
Article in English | MEDLINE | ID: mdl-30647729

ABSTRACT

Impairments in social behavior are highly implicated in many neuropsychiatric disorders. Recent studies indicate a role for endoplasmic reticulum (ER) stress in altering social behavior, but the underlying mechanism is not known. In the present study, we examined the role of transglutaminase 2 (TG2), a calcium-dependent enzyme known to be induced following ER stress, in social behavior in mice. ER stress induced by tunicamycin administration increased TG2 protein levels in the mouse prefrontal cortex (PFC). PFC-specific inhibition of TG2 attenuated ER stress-induced deficits in social behavior. Conversely, overexpression of TG2 in the PFC resulted in social behavior impairments in mice. In addition, systemic administration of cysteamine, a TG2 inhibitor, attenuated social behavior deficits. Our preliminary findings using postmortem human brain samples found increases in TG2 mRNA and protein levels in the middle frontal gyrus of subjects with autism spectrum disorder. These findings in mice and human postmortem brain samples identify changes in TG2 activity in the possible dysregulation of social behavior.


Subject(s)
Autism Spectrum Disorder/metabolism , Behavior, Animal/physiology , Endoplasmic Reticulum Stress/physiology , GTP-Binding Proteins/metabolism , Prefrontal Cortex/metabolism , Social Behavior , Transglutaminases/metabolism , Adolescent , Animals , Behavior, Animal/drug effects , Child , Child, Preschool , Cysteamine/pharmacology , Endoplasmic Reticulum Stress/drug effects , Humans , Male , Mice , Prefrontal Cortex/drug effects , Protein Glutamine gamma Glutamyltransferase 2 , Tunicamycin/pharmacology
4.
Mol Neuropsychiatry ; 3(2): 85-91, 2017 Nov.
Article in English | MEDLINE | ID: mdl-29230396

ABSTRACT

The endoplasmic reticulum (ER) is an important organelle responsible for the folding and sorting of proteins. Disturbances in ER homeostasis can trigger a cellular response known as the unfolded protein response, leading to accumulation of unfolded or misfolded proteins in the ER lumen called ER stress. A number of recent studies suggest that mutations in autism spectrum disorder (ASD)-susceptible synaptic genes induce ER stress. However, it is not known whether ER stress-related genes are altered in the brain of ASD subjects. In the present study, we investigated the mRNA expression of ER stress-related genes (ATF4, ATF6, PERK, XBP1, sXBP1, CHOP, and IRE1) in the postmortem middle frontal gyrus of ASD and control subjects. RT-PCR analysis showed significant increases in the mRNA levels of ATF4, ATF6, PERK, XBP1, CHOP, and IRE1 in the middle frontal gyrus of ASD subjects. In addition, we found a significant positive association of mRNA levels of ER stress genes with the diagnostic score for stereotyped behavior in ASD subjects. These results, for the first time, provide the evidence of the dysregulation of ER stress genes in the brain of subjects with ASD.

5.
Mol Neuropsychiatry ; 3(1): 19-27, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28879198

ABSTRACT

Autism spectrum disorder (ASD) is a neurodevelopmental disorder with hallmark symptoms including social deficits, communication deficits and repetitive behaviors. Accumulating evidence suggests a potential role of the immune system in the pathophysiology of ASD. The complement system represents one of the major effector mechanisms of the innate immune system, and regulates inflammation, and orchestrates defense against pathogens. However, the role of CNS complement system in ASD is not well understood. In the present study, we found a significant increase in C2, C5, and MASP1, but a decrease in C1q, C3, and C4 mRNA levels in the middle frontal gyrus of ASD subjects compared to controls. Significant decreases in the mRNA levels of 2 key proinflammatory cytokines, IL-17 and IL-23 were observed in ASD subjects. Our study further demonstrated a strong association of complement genes with IL-17 and IL-23, suggesting a possible role of the complement system in immune dysregulation in ASD. We observed significant associations between complement components and abnormality of development scores in subjects with ASD. In rodents, C3 knockdown in the prefrontal cortex induced social interaction deficits and repetitive behavior in mice. Together, these studies suggest a potential role of C3 in the pathophysiology of ASD.

6.
J Pharmacol Exp Ther ; 360(1): 48-58, 2017 Jan.
Article in English | MEDLINE | ID: mdl-27789681

ABSTRACT

Estrogens, the primary female sex hormones, were originally characterized through their important role in sexual maturation and reproduction. However, recent studies have shown that estrogens play critical roles in a number of brain functions, including cognition, learning and memory, neurodevelopment, and adult neuroplasticity. A number of studies from both clinical as well as preclinical research suggest a protective role of estrogen in neurodevelopmental disorders including autism spectrum disorder (ASD) and schizophrenia. Alterations in the levels of estrogen receptors have been found in subjects with ASD or schizophrenia, and adjunctive estrogen therapy has been shown to be effective in enhancing the treatment of schizophrenia. This review summarizes the findings on the role of estrogen in the pathophysiology of neurodevelopmental disorders with a focus on ASD and schizophrenia. We also discuss the potential of estrogen as a therapeutic target in the above disorders.


Subject(s)
Estrogens/metabolism , Molecular Targeted Therapy/methods , Neurodevelopmental Disorders/drug therapy , Neurodevelopmental Disorders/pathology , Signal Transduction/drug effects , Animals , Brain/drug effects , Brain/physiopathology , Humans , Neurodevelopmental Disorders/physiopathology
7.
Curr Behav Neurosci Rep ; 3(2): 154-164, 2016 Jun.
Article in English | MEDLINE | ID: mdl-27695666

ABSTRACT

Social interaction and communication are complex behavioral paradigms involving many components. Many different neurotransmitters, hormones, sensory inputs, and brain regions are involved in the act of social engagement and verbal or nonverbal communication. Autism Spectrum Disorder (ASD) and schizophrenia are two neurodevelopmental disorders that have social and language deficits as hallmark symptoms, but show very different etiologies. The output of social dysfunction is common to both ASD and schizophrenia, but this likely arises from very different pathophysiological means. This review will attempt to compile and interpret human and animal studies showing the neurobiological basis for the development of social and language deficits in ASD and schizophrenia as well as a comparison of the two disorders.

8.
Mol Neurobiol ; 53(4): 2090-9, 2016 May.
Article in English | MEDLINE | ID: mdl-25912394

ABSTRACT

Although stress has been implicated in the pathophysiology of autistic spectrum disorder (ASD), it is not known whether glucocorticoid receptor (GR) levels are altered in the brain of subjects with ASD. The messenger RNA (mRNA) levels of GR isoforms (GRα, GRß, GRγ, and GRP), mineralocorticoid receptor (MR), GR co-chaperones (FKBP5, PTGES3, and BAG1), and inflammatory cytokines (IL-6, IL-1ß, and IFN-γ) were examined in the postmortem middle frontal gyrus tissues of 13 ASD and 13 age-matched controls by qRT-PCR. The protein levels were examined by Western blotting. We found significant decreases in GRα (64%), GRγ (48%), GRP (20%) and MR (46%) mRNA levels in ASD subjects as compared to controls. However, significant increases in FKBP5 (42%) and PTGES3 (35%) mRNA levels were observed in ASD subjects. There were no differences in the mRNA levels of GRß and BAG1 in ASD subjects as compared to controls. MR mRNA was found to be negatively correlated with the diagnostic score for abnormality of development. On the protein level, significant reductions in GR and MR, but no change in FKBP5 and PTGES3 were found in ASD subjects as compared to controls. Moreover, we observed significant increases in IL-1ß and IFN-γ mRNA levels in ASD subjects, and these cytokines were negatively associated with GR levels. Our data, for the first time, reports dysregulation of GR, MR, FKBP5, and PTGES3 in ASD and suggest a possible role of inflammation in altered GR function in ASD.


Subject(s)
Autism Spectrum Disorder/genetics , Molecular Chaperones/genetics , Prefrontal Cortex/metabolism , Prefrontal Cortex/pathology , Prostaglandin-E Synthases/genetics , Receptors, Glucocorticoid/genetics , Receptors, Mineralocorticoid/genetics , Tacrolimus Binding Proteins/genetics , Child , Demography , Female , Gene Expression Regulation , Humans , Interferon-gamma/genetics , Interferon-gamma/metabolism , Interleukin-1beta/genetics , Interleukin-1beta/metabolism , Male , Molecular Chaperones/metabolism , Prostaglandin-E Synthases/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Receptors, Glucocorticoid/metabolism , Receptors, Mineralocorticoid/metabolism , Statistics, Nonparametric , Tacrolimus Binding Proteins/metabolism
9.
Mol Autism ; 5: 45, 2014.
Article in English | MEDLINE | ID: mdl-25392730

ABSTRACT

BACKGROUND: Although the neurobiological basis of autism spectrum disorder (ASD) is not fully understood, recent studies have indicated the potential role of GABAA receptors in the pathophysiology of ASD. GABAA receptors play a crucial role in various neurodevelopmental processes and adult neuroplasticity. However, the mechanism(s) of regulation of GABAA receptors in ASD remains poorly understood. METHODS: Postmortem middle frontal gyrus tissues (13 ASD and 13 control subjects) were used. In vitro studies were performed in primary cortical neurons at days in vitro (DIV) 14. The protein levels were examined by western blotting. Immunofluorescence studies were employed for cellular localization. The gene expression was determined by RT-PCR array and qRT-PCR. RESULTS: A significant decrease in GABAAα1 protein, but not mRNA levels was found in the middle frontal gyrus of ASD subjects indicating a post-translational regulation of GABAA receptors in ASD. At the cellular level, treatment with proteasomal inhibitor, MG132, or lactacystin significantly increased GABAAα1 protein levels and Lys48-linked polyubiquitination of GABAAα1, but reduced proteasome activity in mouse primary cortical neurons (DIV 14 from E16 embryos). Moreover, treatment with betulinic acid, a proteasome activator significantly decreased GABAAα1 protein levels in cortical neurons indicating the role of polyubiquitination of GABAAα1 proteins with their subsequent proteasomal degradation in cortical neurons. Ubiquitination specific RT-PCR array followed by western blot analysis revealed a significant increase in SYVN1, an endoplasmic reticulum (ER)-associated degradation (ERAD) E3 ubiquitin ligase in the middle frontal gyrus of ASD subjects. In addition, the inhibition of proteasomal activity by MG132 increased the expression of GABAAα1 in the ER. The siRNA knockdown of SYVN1 significantly increased GABAAα1 protein levels in cortical neurons. Moreover, reduced association between SYVN1 and GABAAα1 was found in the middle frontal gyrus of ASD subjects. CONCLUSIONS: SYVN1 plays a critical role as an E3 ligase in the ubiquitin proteasome system (UPS)-mediated GABAAα1 degradation. Thus, inhibition of the ubiquitin-proteasome-mediated GABAAα1 degradation may be an important mechanism for preventing GABAAα1 turnover to maintain GABAAα1 levels and GABA signaling in ASD.

10.
Mol Autism ; 5(1): 46, 2014.
Article in English | MEDLINE | ID: mdl-25221668

ABSTRACT

BACKGROUND: Autism spectrum disorders (ASD) are much more common in males than in females. Molecular alterations within the estrogen receptor (ER) signaling pathway may contribute to the sex difference in ASD, but the extent of such abnormalities in the brain is not known. METHODS: Postmortem middle frontal gyrus tissues (13 ASD and 13 control subjects) were used. The protein levels were examined by western blotting. The gene expression was determined by qRT-PCR. RESULTS: Gene expression analysis identified a 35% decrease in ERß mRNA expression in the middle frontal gyrus of ASD subjects. In addition, a 38% reduction in aromatase (CYP19A1) mRNA expression was observed in ASD subjects. We also found significant decreases in ER co-activators that included a 34% decrease in SRC-1, a 77% decrease in CBP, and a 52% decrease in P/CAF mRNA levels in ASD subjects relative to controls. There were no differences in the mRNA levels of TIF-2, AIB-1 (ER co-activators), ER co-repressors (SMRT and nCoR) and ERα in the middle frontal gyrus of ASD subjects as compared to controls. We observed significant correlations between ERß, CYP19A1, and co-activators in the study subjects. Immunoblot analysis further confirmed the changes in ERß and aromatase at the protein level in the control and ASD subjects. CONCLUSIONS: These results, for the first time, provide the evidence of the dysregulation of ERß and co-factors in the brain of subjects with ASD.

11.
Curr Neuropharmacol ; 12(2): 100-7, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24669205

ABSTRACT

Stress and glucocorticoid hormones, which are released into the circulation following stressful experiences, have been shown to contribute significantly to the manifestation of various psychiatric illnesses including schizophrenia and depression. Studies in rodents have reported dose and time dependent effects of glucocorticoids on the expression of proteins related to neuroplasticity. However, the mechanism(s) involved in the regulation of proteins by glucocorticoids are not clear. Ubiquitin ligases play important role in degradation, trafficking and stabilization of proteins. The present study investigated the effect of glucocorticoid on ubiquitin-proteasome system in mouse frontal cortex. A significant increase in mRNA and protein levels of parkin, an E3 ubiquitin ligase was found in cultured mouse primary cortical neurons following corticosterone treatment. An increase in parkin levels was also found in mouse frontal cortex in vivo following acute dexamethasone treatment. However, chronic treatment with corticosterone did not change parkin protein levels in mouse frontal cortex. Studies using postmortem brain samples from schizophrenia and control subjects indicated a significant increase in parkin protein levels in frontal cortex of schizophrenia subjects suggesting a response to increased stress conditions in schizophrenia. These findings suggest a possible role of parkin in the pathophysiology of stress-related psychiatric disorders.

SELECTION OF CITATIONS
SEARCH DETAIL
...