Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Planta ; 257(2): 46, 2023 Jan 25.
Article in English | MEDLINE | ID: mdl-36695941

ABSTRACT

MAIN CONCLUSION: The IPK1 genes, which code for 2-kinases that can synthesize Ins(1,2,4,5,6)P5 from Ins(1,4,5,6)P4, are expressed throughout cotton plants, resulting in the highest Ins(1,2,4,5,6)P5 concentrations in young leaves and flower buds. Cotton leaves contain large amounts of Ins(1,2,4,5,6)P5 and InsP6 compared to plants not in the Malvaceae family. The inositol polyphosphate pathway has been linked to stress tolerance in numerous plant species. Accordingly, we sought to determine why cotton and other Malvaceae have such high levels of these inositol phosphates. We have quantified the levels of InsP5 and InsP6 in different tissues of cotton plants and determined the expression of IPK1 (inositol 1,3,4,5,6-pentakisphosphate 2-kinase gene) in vegetative and reproductive tissues. Gossypium hirsutum was found to contain four IPK1 genes that were grouped into two pair (AB, CD) where each pair consists of very similar sequences that were measured together. More IPK1AB is expressed in leaves than in roots, whereas more IPK1CD is expressed in roots than in leaves. Leaves and flower buds have more InsP5 and InsP6 than stems and roots. Leaves and roots contain more InsP5 than InsP6, whereas flower buds and stems contain more InsP6 than InsP5. Dark-grown seedlings contain more InsP5 and InsP6 than those grown under lights, and the ratio of InsP5 to InsP6 is greater in the light-grown seedlings. During 35 days of the life cycle of the third true leaf, InsP5 and InsP6 gradually decreased by more than 50%. Silencing IPK1AB and IPK1CD with Cotton Leaf Crumple Virus-induced gene silencing (VIGS) resulted in plants with an intense viral phenotype, reduced IPK1AB expression and lowered amounts of InsP5. The results are consistent with Ins(1,2,4,5,6)P5 synthesis from Ins(1,4,5,6)P4 by IPK1. This study detailed the central role of IPK1 in cotton inositol polyphosphate metabolism, which has potential to be harnessed to improve the resistance of plants to different kinds of stress.


Subject(s)
Gossypium , Phytic Acid , Phytic Acid/metabolism , Gossypium/genetics , Gossypium/metabolism , Inositol Phosphates/metabolism , Inositol Phosphates/pharmacology
2.
Metabolites ; 11(9)2021 Sep 04.
Article in English | MEDLINE | ID: mdl-34564416

ABSTRACT

Phosphate is a major plant macronutrient and low phosphate availability severely limits global crop productivity. In Arabidopsis, a key regulator of the transcriptional response to low phosphate, phosphate starvation response 1 (PHR1), is modulated by a class of signaling molecules called inositol pyrophosphates (PP-InsPs). Two closely related diphosphoinositol pentakisphosphate enzymes (AtVIP1 and AtVIP2) are responsible for the synthesis and turnover of InsP8, the most implicated molecule. This study is focused on characterizing Arabidopsis vip1/vip2 double mutants and their response to low phosphate. We present evidence that both local and systemic responses to phosphate limitation are dampened in the vip1/vip2 mutants as compared to wild-type plants. Specifically, we demonstrate that under Pi-limiting conditions, the vip1/vip2 mutants have shorter root hairs and lateral roots, less accumulation of anthocyanin and less accumulation of sulfolipids and galactolipids. However, phosphate starvation response (PSR) gene expression is unaffected. Interestingly, many of these phenotypes are opposite to those exhibited by other mutants with defects in the PP-InsP synthesis pathway. Our results provide insight on the nexus between inositol phosphates and pyrophosphates involved in complex regulatory mechanisms underpinning phosphate homeostasis in plants.

3.
Biochem Mol Biol Educ ; 49(1): 9-14, 2021 01.
Article in English | MEDLINE | ID: mdl-33316136

ABSTRACT

Like many institutions around the world, the COVID-19 pandemic prompted us to shift our summer 2020 in-person undergraduate experiential learning program to a remote, virtual format. Here, we present our observations, summarized in 10 best practices, for moving a STEM-focused research experience for undergraduates, experiential learning program or research-based course online. We will also discuss how our program was originally designed and implemented, and how we adapted our activities to deliver an at-home research experience that maintained student engagement, mentorship, and a shared sense of community.


Subject(s)
Biochemistry/education , COVID-19 , Education, Distance , Education, Graduate , Pandemics , SARS-CoV-2 , Humans
4.
Molecules ; 25(12)2020 Jun 17.
Article in English | MEDLINE | ID: mdl-32560343

ABSTRACT

The ability of an organism to maintain homeostasis in changing conditions is crucial for growth and survival. Eukaryotes have developed complex signaling pathways to adapt to a readily changing environment, including the inositol phosphate (InsP) signaling pathway. In plants and humans the pyrophosphorylated inositol molecules, inositol pyrophosphates (PP-InsPs), have been implicated in phosphate and energy sensing. PP-InsPs are synthesized from the phosphorylation of InsP6, the most abundant InsP. The plant PP-InsP synthesis pathway is similar but distinct from that of the human, which may reflect differences in how molecules such as Ins(1,4,5)P3 and InsP6 function in plants vs. animals. In addition, PP-InsPs can potentially interact with several major signaling proteins in plants, suggesting PP-InsPs play unique signaling roles via binding to protein partners. In this review, we will compare the biosynthesis and role of PP-InsPs in animals and plants, focusing on three central themes: InsP6 synthesis pathways, synthesis and regulation of the PP-InsPs, and function of a specific protein domain called the Syg1, Pho1, Xpr1 (SPX ) domain in binding PP-InsPs and regulating inorganic phosphate (Pi) sensing. This review will provide novel insights into the biosynthetic pathway and bioactivity of these key signaling molecules in plant and human systems.


Subject(s)
Inositol 1,4,5-Trisphosphate/metabolism , Phytic Acid/metabolism , Signal Transduction , Animals , Humans , Phosphotransferases (Alcohol Group Acceptor)/metabolism , Phosphotransferases (Phosphate Group Acceptor)/metabolism , Receptors, G-Protein-Coupled/metabolism , Receptors, Virus/metabolism , Xenotropic and Polytropic Retrovirus Receptor
SELECTION OF CITATIONS
SEARCH DETAIL
...