Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 78
Filter
Add more filters










Publication year range
1.
J Neurophysiol ; 86(1): 503-13, 2001 Jul.
Article in English | MEDLINE | ID: mdl-11431528

ABSTRACT

The initiation and propagation of dendritic Ca(2+)-dependent regenerative potentials (CDRPs) were investigated by imaging the Ca(2+)-sensitive dye Fluo-4 during whole cell recording from the soma of layer 5 pyramidal neurons visualized in a slice preparation of rat neocortex by the use of infrared-differential interference contrast microscopy. CDRPs were evoked by focal iontophoresis of glutamate at visually identified sites 178-648 microm from the soma on the apical dendrite and at sites on the basal dendrites. Increases in [Ca(2+)](i) were maximal near the site of iontophoresis and were graded with iontophoretic current that was subthreshold for evoking CDRPs. CDRP initiation was associated with a [Ca(2+)](i) rise that differed from a just-subthreshold response in both magnitude and spatial extent but whose amplitude declined both proximal and distal to the iontophoretic site. These [Ca(2+)](i) rises, whether associated with subthreshold or regenerative voltage responses, were minimally affected by blockade of N-methyl-D-aspartate receptors but were abolished by Cd(2+), suggesting that Ca(2+) influx through voltage-gated channels caused the rise of [Ca(2+)](i). On the assumption that the rise of [Ca(2+)](i) during a CDRP marks the spatial extent of regenerative Ca(2+) influx, we conclude that CDRPs can be evoked at any point on the main apical or basal trunk where membrane potential reaches CDRP threshold rather than at discrete "hot spots," the CDRP is initiated at a spatially restricted site, and it propagates decrementally both distal and proximal to its initiation site. These results raise the possibility that synaptic integration may occur first in the dendrites to evoke a CDRP. Because these responses propagate decrementally to the soma, they are able to sum with input from other regions of the cell so that the cell as a whole remains integrative.


Subject(s)
Calcium/metabolism , Dendrites/metabolism , Pyramidal Cells/physiology , Action Potentials/drug effects , Action Potentials/physiology , Aniline Compounds , Animals , Cadmium/pharmacology , Calcium Channels/physiology , Evoked Potentials/physiology , Female , Fluorescent Dyes , Glutamic Acid/pharmacology , Ion Channel Gating/physiology , Iontophoresis , Male , Microscopy, Fluorescence , Neocortex/cytology , Organ Culture Techniques , Pyramidal Cells/ultrastructure , Rats , Rats, Sprague-Dawley , Stimulation, Chemical , Xanthenes
2.
J Neurophysiol ; 86(1): 514-27, 2001 Jul.
Article in English | MEDLINE | ID: mdl-11431529

ABSTRACT

Long-lasting, dendritic, Ca(2+)-dependent action potentials (plateaus) were investigated in layer 5 pyramidal neurons from rat neocortical slices visualized by infrared-differential interference contrast microscopy to understand the role of dendritic Ca(2+) spikes in the integration of synaptic input. Focal glutamate iontophoresis on visualized dendrites caused soma firing rate to increase linearly with iontophoretic current until dendritic Ca(2+) responses caused a jump in firing rate. Increases in iontophoretic current caused no further increase in somatic firing rate. This limitation of firing rate resulted from the inability of increased glutamate to change evoked plateau amplitude. Similar nonlinear patterns of soma firing were evoked by focal iontophoresis on the distal apical, oblique, and basal dendrites, whereas iontophoresis on the soma and proximal apical dendrite only evoked a linear increase in firing rate as a function of iontophoretic current without plateaus. Plateau amplitude recorded in the soma decreased as the site of iontophoresis was moved farther from the soma, consistent with decremental propagation of the plateau to the soma. Currents arriving at the soma summed if plateaus were evoked on separate dendrites or if subthreshold responses were evoked from sites on the same dendrite. If plateaus were evoked at two sites on the same dendrite, only the proximal plateau was seen at the soma. Just-subthreshold depolarizations at two sites on the same dendrite could sum to evoke a plateau at the proximal site. We conclude that the plateaus prevent current from ligand-gated channels distal to the plateau-generating region from reaching the soma and directly influencing firing rate. The implications of plateau properties for synaptic integration are discussed.


Subject(s)
Calcium/metabolism , Dendrites/metabolism , Pyramidal Cells/physiology , Action Potentials/drug effects , Action Potentials/physiology , Animals , Cadmium/pharmacology , Calcium Channels/physiology , Evoked Potentials/physiology , Female , Fluorescent Dyes , Glutamic Acid/pharmacology , In Vitro Techniques , Iontophoresis , Isoquinolines , Ligands , Male , Pyramidal Cells/ultrastructure , Rats , Rats, Sprague-Dawley , Somatosensory Cortex/cytology , Stimulation, Chemical
4.
J Physiol Paris ; 93(1-2): 17-21, 1999.
Article in English | MEDLINE | ID: mdl-10084705

ABSTRACT

Layer five pyramidal neurons of rat and cat neocortex have numerous ionic conductance mechanisms. The presence of these voltage-dependent conductances in the dendrites has a significant effect on the transmission of current from synaptic sites to the spike generating region in the proximal axon. Here we show such threshold activation of persistent sodium channels markedly amplifies current flowing through glutamate activated dendritic channels.


Subject(s)
Dendrites/physiology , Pyramidal Cells/physiology , Animals , Cats , Electric Conductivity , Glutamic Acid/pharmacology , Linear Models , Neocortex/physiology , Neocortex/ultrastructure , Patch-Clamp Techniques , Pyramidal Cells/ultrastructure , Rats , Sodium Channels/physiology , Tetrodotoxin/pharmacology
5.
J Neurophysiol ; 79(5): 2432-46, 1998 May.
Article in English | MEDLINE | ID: mdl-9582218

ABSTRACT

In a previous study iontophoresis of glutamate on the apical dendrite of layer 5 pyramidal neurons from rat neocortex was used to identify sites at which dendritic depolarization evoked small, prolonged Ca2+ spikes and/or low-threshold Na+ spikes recorded by an intracellular microelectrode in the soma. These spikes were identified as originating in the dendrite. Here we evoke similar dendritic responses by electrical stimulation of presynaptic elements near the tip of the iontophoretic electrode with the use of a second extracellular electrode. In 9 of 12 recorded cells, electrically evoked excitatory postsynaptic potentials (EPSPs) above a minimum size triggered all-or-none postsynaptic responses similar to those evoked by dendritic glutamate iontophoresis at the same site. Both the synaptically evoked and the iontophoretically evoked depolarizations were abolished reversibly by blockade of glutamate receptors. In all recorded cells, the combination of iontophoresis and an EPSP, each of which was subthreshold for the dendritic spike when given alone, evoked a dendritic spike similar to that evoked by a sufficiently large iontophoresis. In one cell tested, dendritic spikes could be evoked by the summation of two independent subthreshold EPSPs evoked by stimulation at two different locations. We conclude that the dendritic spikes are not unique to the use of glutamate iontophoresis because similar spikes can be evoked by EPSPs. We discuss the implications of these results for synaptic integration and for the interpretation of recorded synaptic potentials.


Subject(s)
Dendrites/physiology , Pyramidal Cells/physiology , 2-Amino-5-phosphonovalerate/pharmacology , 6-Cyano-7-nitroquinoxaline-2,3-dione/pharmacology , Action Potentials/drug effects , Animals , Dendrites/drug effects , Electric Stimulation , Excitatory Amino Acid Agonists/pharmacology , Excitatory Postsynaptic Potentials/physiology , Female , Glutamic Acid/pharmacology , Iontophoresis , Male , Motor Cortex/cytology , N-Methylaspartate/pharmacology , Rats , Rats, Sprague-Dawley , Receptors, Glutamate/drug effects , Receptors, Glutamate/physiology , Sodium Channels/drug effects , Somatosensory Cortex/cytology , Tetrodotoxin/pharmacology
6.
J Neurophysiol ; 78(1): 187-98, 1997 Jul.
Article in English | MEDLINE | ID: mdl-9242273

ABSTRACT

The axial current transmitted to the soma during the long-lasting iontophoresis of glutamate at a distal site on the apical dendrite was measured by somatic voltage clamp of rat neocortical pyramidal neurons. Evidence for voltage- and Ca2+-gated channels in the apical dendrite was sought by examining the modification of this transmitted current resulting from the alteration of membrane potential and the application of channel-blocking agents. After N-methyl-D-aspartate receptor blockade, iontophoresis of glutamate on the soma evoked a current whose amplitude decreased linearly with depolarization to an extrapolated reversal potential near 0 mV. Under the same conditions, glutamate iontophoresis on the apical dendrite 241-537 microm from the soma resulted in a transmitted axial current that increased with depolarization over the same range of membrane potential (about -90 to -40 mV). Current transmitted from dendrite to soma was thus amplified during depolarization from resting potential (about -70 mV) and attenuated during hyperpolarization. After Ca2+ influx was blocked to eliminate Ca2+-dependent K+ currents, application of 10 mM tetraethylammonium chloride (TEA) altered the amplitude and voltage dependence of the transmitted current in a manner consistent with the reduction of dendritic voltage-gated K+ current. We conclude that dendritic, TEA-sensitive, voltage-gated K+ channels can be activated by tonic dendritic depolarization. The most prominent effects of blocking Ca2+ influx resembled those elicited by TEA application, suggesting that these effects were caused predominantly by blockade of a dendritic Ca2+-dependent K+ current. When cells were impaled with microelectrodes containing ethylene glycol-bis(beta-amino-ethyl ether)-N,N',N'-tetraacetic acid to prevent a rise in intracellular Ca2+ concentration, blockade of Ca2+ influx altered the tonic transmitted current in different manner consistent with the blockade of an inward dendritic current carried by high-threshold-activated Ca2+ channels. We conclude that the primary effect of Ca2+ influx during tonic dendritic depolarization is the activation of a dendritic Ca2+-dependent K+ current. The hyperpolarizing attenuation of transmitted current was unaffected by blocking all known voltage-gated inward currents except the hyperpolarization-activated cation current (Ih). Extracellular Cs+ (3 mM) reversibly abolished both the hyperpolarizing attenuation of transmitted current and Ih measured at the soma. We conclude that activation of Ih by hyperpolarization of the proximal apical dendrite would cause less axial current to arrive at the soma from a distal site than in a passive dendrite. Several functional implications of dendritic K+ and Ih channels are discussed.


Subject(s)
Calcium/physiology , Dendrites/physiology , Neural Conduction/physiology , Pyramidal Cells/physiology , Synaptic Transmission/physiology , Animals , Dendrites/drug effects , Female , Glutamic Acid/pharmacology , Iontophoresis , Male , Membrane Potentials/drug effects , Membrane Potentials/physiology , Neural Conduction/drug effects , Potassium Channels/drug effects , Pyramidal Cells/drug effects , Rats , Rats, Sprague-Dawley , Synaptic Transmission/drug effects , Tetraethylammonium/pharmacology
7.
J Neurophysiol ; 77(5): 2466-83, 1997 May.
Article in English | MEDLINE | ID: mdl-9163370

ABSTRACT

Iontophoresis of glutamate at sites on the apical dendrite 278-555 microm from the somata of rat neocortical pyramidal neurons evoked low-threshold, small, slow spikes and/or large, fast spikes in 71% of recorded cells. The amplitude of the small, slow spikes recorded at the soma averaged 9.1 mV, and their apparent threshold was <10 mV positive to resting potential. Both their amplitude and their apparent threshold decreased as the iontophoretic site was moved farther from the soma. These spikes were not abolished by somatic hyperpolarization. When the somata of cells displaying these small spikes were voltage clamped at membrane potentials that prevented somatic or axonic firing, corresponding current spikes could be evoked all-or-none by dendritic depolarization, indicating that the small, slow spikes arose in the dendrite. Similar responses were not observed during somatic depolarization evoked by current pulses or glutamate iontophoresis. These small, slow spikes were abolished by blocking voltage-gated Ca2+ channels but not by blocking Na+ channels or N-methyl-D-aspartate receptors. We conclude that these Ca2+ spikes occurred in a spatially restricted region of the dendrite and were not actively propagated to the soma. In the presence of 10 mM tetraethylammonium chloride, the amplitudes of the iontophoretically evoked Ca2+ spikes were large, similar to those of the Ca2+ spikes evoked by somatic current injection, but their apparent thresholds were 63% lower. We conclude that dendritic K+ channels normally prevent the active propagation of Ca2+ spikes along the dendrite. In 36% of recorded cells dendritic glutamate iontophoresis evoked a Na+ spike with an apparent threshold 63% lower than those evoked by somatic current injection or somatic glutamate iontophoresis. Blockade of these low-threshold Na+ spikes by pharmacological or electrophysiological means often revealed underlying small dendritic Ca2+ spikes. When cells displaying the low-threshold Na+ spikes were voltage clamped at membrane potentials that prevented firing of the soma or axon, corresponding tetrodotoxin-sensitive current spikes could be evoked all-or-none by dendritic depolarization. We conclude that these low-threshold Na+ spikes were initiated in the dendrite, probably by local Ca2+ spikes, and subsequently propagated actively to the soma. Most cells displaying dendritic Na+ spikes fired multiple bursts of action potentials during tonic dendritic depolarization, whereas somatic depolarization of the same cells evoked only regular firing. We discuss the implications of dendritic Ca2+ and Na+ spikes for synaptic integration and neural input-output relations.


Subject(s)
Cerebral Cortex/physiology , Dendrites/physiology , Glutamic Acid/physiology , Pyramidal Cells/physiology , Receptors, Glutamate/physiology , Synaptic Transmission/physiology , Animals , Calcium Channels/physiology , Culture Techniques , Evoked Potentials/physiology , Female , Male , Patch-Clamp Techniques , Rats , Rats, Sprague-Dawley , Sodium Channels/physiology
9.
Annu Rev Physiol ; 58: 349-62, 1996.
Article in English | MEDLINE | ID: mdl-8815799

ABSTRACT

Neurons from the mammalian CNS have a noninactivating component of the tetrodotoxin-sensitive sodium current (INaP). Although its magnitude is < 1% of the transient sodium current, INaP has functional significance because it is activated about 10 mV negative to the transient sodium current, where few voltage-gated channels are activated and neuron input resistance is high. INaP adds to synaptic current, and evidence indicates that it is present in dendrites where relatively small depolarizations will activate INaP, thereby increasing effectiveness of distal depolarizing synaptic activity. The mechanism for INaP is not known. Research in striated muscle and neurons suggests a modal change in gating of conventional sodium channels, but it is also possible that INaP flows through a distinct subtype of noninactivating sodium channels. Modulation of INaP could have a significant effect on the transduction of synaptic currents by neurons.


Subject(s)
Central Nervous System/metabolism , Neurons/metabolism , Sodium Channels/metabolism , Animals , Central Nervous System/cytology , Humans , Neurons/drug effects , Sodium Channels/drug effects
10.
J Neurophysiol ; 74(5): 2220-4, 1995 Nov.
Article in English | MEDLINE | ID: mdl-8592214

ABSTRACT

1. Evidence for amplification of synaptic current by voltage-gated channels in dendrites of neocortical pyramidal neurons was demonstrated by examining the effect of specific channel blocking agents on the current arriving at the soma during iontophoresis of glutamate at a distal site on the apical dendrite. 2. Dendritic noninactivating Na+ channels were implicated in this voltage-dependent amplification of the transmitted current because it was maintained for > 1 s and because tetrodotoxin (TTX) eliminated much of this amplification. 3. Specific blockers of N-methyl-D-aspartate (NMDA) glutamate receptors reduced the amplitude of the glutamate-evoked current at all potentials and also reduced the non-TTX-sensitive component of voltage-dependent augmentation. The effects of TTX were identical whether or not NMDA channels were blocked. 4. We conclude that a persistent Na+ conductance exists in the apical dendrite of neocortical neurons. Together with the NMDA conductance at the synaptic site it provides a mechanism for the graded, voltage-dependent amplification of tonic, excitatory synaptic input. This amplification results in much more effective transmission of tonic excitatory current to the soma than would occur in a passive dendrite.


Subject(s)
Cerebral Cortex/physiology , Dendrites/physiology , Neurons/physiology , Sodium Channels/physiology , Synaptic Transmission/physiology , Amplifiers, Electronic , Animals , Cerebral Cortex/drug effects , Cerebral Cortex/ultrastructure , Dendrites/drug effects , Electric Conductivity , Iontophoresis , Neurons/drug effects , Neurons/ultrastructure , Patch-Clamp Techniques , Rats , Rats, Sprague-Dawley , Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors , Sodium Channels/drug effects , Synaptic Transmission/drug effects , Tetrodotoxin/pharmacology , Time Factors
11.
J Neurophysiol ; 72(2): 693-704, 1994 Aug.
Article in English | MEDLINE | ID: mdl-7527076

ABSTRACT

1. Pyramidal neurons from layer V of rat neocortex were recorded intracellularly in a brain slice preparation to study their response to stimulation of metabotropic glutamate receptors (mGluRs) by bath application of the selective mGluR agonist (1S,3R)-1-aminocyclopentane-1,3-dicarboxylic acid (1S,3R-ACPD) and by the nonselective agonists glutamate and quisqualate. 2. The principal postsynaptic effect of mGluR stimulation in the presence of ionotropic glutaminergic and muscarinic cholinergic antagonists was the appearance of a slow afterdepolarization (ADP) after evoked spikes. Only an afterhyperpolarization (AHP) was present in control perfusate. After 20 spikes evoked individually at 100 Hz the ADP peaked at 317 +/- 117 (SD) ms after the spike train, ranged from 1 to 12 mV in peak amplitude, and decayed over 7.4 +/- 4.7 s. This effect was not blocked by L-2-amino-3-phosphono-propionic acid (1 mM). Spikes evoked in the presence of the ionotropic glutamate receptor agonist R,S-alpha-amino-3-hydroxy-5-methylisoxazole-4-proprionic acid (AMPA) did not have an ADP. 3. A detectable ADP appeared at concentrations of 0.1 microM quisqualate or 0.5 microM 1S,3R-ACPD. Maximum ADP amplitude was obtained with 5 microM quisqualate or 100 microM 1S,3R-ACPD. The ADP appeared after a single evoked spike in most cells tested and ADP amplitude increased to a maximum as the number of spikes evoked at 100 Hz was increased to between 5 and 20. 4. The ionic mechanisms underlying the ADP were examined by ion substitution and the application of channel-blocking agents. No difference in ADP amplitude was observed when the recording electrode contained CH3SO4. instead of Cl.. The ADP was present after 3 mM extracellular Cs+ were added to block the hyperpolarization-activated cation current or when 100 microM Ba2+ were included to block voltage-gated K+ currents. The ADP was abolished when Mn2+ was substituted for Ca2+ in the perfusate or when the Ca2+ chelator 5,5'-dimethyl-bis-(o-aminophenoxy)-N,N,N',N'-tetraacetic acid was included in the recording electrode. A large ADP followed Ca2+ spikes evoked in the presence of 1 microM tetrodotoxin with 20 mM tetraethylammonium in the perfusate or with Cs+ substituted for K+ in the recording electrode. The amplitude of the ADP after the Ca2+ spikes was reduced by 49% when extracellular Na+ concentration was reduced from 136 to 26 mM. 5. The voltage dependence of the ADP was examined in relation to K+ equilibrium potential (EK).(ABSTRACT TRUNCATED AT 400 WORDS)


Subject(s)
Cerebral Cortex/physiology , Ion Channels/physiology , Receptors, Metabotropic Glutamate/physiology , Synaptic Transmission/physiology , Adenosine Diphosphate/metabolism , Animals , Calcium Channels/physiology , Culture Techniques , Electric Stimulation , Female , Male , Membrane Potentials/physiology , Potassium Channels/physiology , Rats , Rats, Sprague-Dawley
12.
J Neurophysiol ; 71(6): 2562-5, 1994 Jun.
Article in English | MEDLINE | ID: mdl-7931536

ABSTRACT

1. These experiments tested the hypothesis that the differing voltage dependence of the transient (INa) and persistent (INaP) Na+ currents in neocortical neurons results from the state of inactivation of one type of Na+ channel rather than from the existence of different types of Na+ channels. This question was examined in acutely isolated pyramidal neurons from the sensorimotor cortex of rats by using papain to remove inactivation from INa and comparing the resulting activation curve with that of INaP. 2. In control cells, INaP activated at more negative potentials than INa. Inclusion of papain in the recording pipette removed inactivation from INa and caused the INa activation curve to be shifted leftward to the position of the curve for INaP measured in control cells. Papain greatly increased both INa amplitude and the time to reach peak INa during smaller depolarizations, whereas the difference between control and test currents was reduced during large depolarizations. 3. We conclude that differences in the voltage dependence of INa and INaP activation does not provide sufficient evidence that these currents flow through separate sets of Na+ channels. Instead, our results are consistent with the idea that INaP largely arises from a fraction of the transient Na+ channels that intermittently lose their inactivation.


Subject(s)
Cerebral Cortex/physiology , Sodium Channels/physiology , Synaptic Transmission/physiology , Animals , Culture Techniques , Membrane Potentials/physiology , Neural Inhibition/physiology , Neurons/physiology , Rats
13.
J Physiol ; 475(2): 197-205, 1994 Mar 01.
Article in English | MEDLINE | ID: mdl-7517449

ABSTRACT

1. The high threshold, voltage-activated (HVA) calcium current was recorded from acutely isolated rat neocortical pyramidal neurones using the whole-cell patch technique to examine the effect of agents that block P-type calcium channels and to compare their effects to those of omega-conotoxin GVIA (omega-CgTX) and nifedipine. 2. When applied at a saturating concentration (100 nM) the peptide toxins omega-Aga-IVA and synthetic omega-Aga-IVA blocked 31.5 and 33.0% of the HVA current respectively. 3. A saturating concentration of nifedipine (10 microM) inhibited 48.2% of the omega-Aga-IVA-sensitive current, whereas saturating concentrations of both omega-Aga-IVA (100 nM) and omega-CgTX (10 microM) blocked separate specific components of the HVA current. 4. Partially purified funnel web spider toxin (FTX) at a dilution of 1:1000 blocked 81.4% of the HVA current and occluded the inhibitory effect of omega-Aga-IVA. Synthetic FTX 3.3 arginine polyamine (sFTX) at a concentration of 1 mM blocked 61.2% of the HVA current rapidly and reversibly. The effects of sFTX were partially occluded by pre-application of omega-Aga-IVA. We conclude that neither FTX nor sFTX blocked a specific component of the HVA current in these cells. 5. In view of the specificity of omega-Aga-IVA for P-type calcium channels in other preparations and for a specific component of the HVA current in dissociated neocortical neurones we conclude that about 30% of the HVA current in these neurones flow through P-channels.


Subject(s)
Calcium Channels/metabolism , Cerebral Cortex/metabolism , 3-Pyridinecarboxylic acid, 1,4-dihydro-2,6-dimethyl-5-nitro-4-(2-(trifluoromethyl)phenyl)-, Methyl ester/pharmacology , Animals , Calcium Channel Blockers/pharmacology , Calcium Channels/classification , Cerebral Cortex/cytology , Female , In Vitro Techniques , Male , Neurons/metabolism , Nifedipine/pharmacology , Peptides/pharmacology , Rats , Rats, Sprague-Dawley , Spider Venoms/pharmacology , omega-Agatoxin IVA , omega-Conotoxin GVIA
14.
J Neurophysiol ; 70(4): 1530-43, 1993 Oct.
Article in English | MEDLINE | ID: mdl-7506757

ABSTRACT

1. As a first step toward identification of the functional significance of the spatial distribution of calcium channels we examined the high voltage-activated calcium current (HVA current) in acutely isolated pyramidal neurons from rat sensorimotor cortex using whole-cell voltage clamp. The goals of this study were (1) to determine whether the pharmacologically separable components of the HVA current differed in voltage dependence or activation kinetics and (2) to develop an empirical model that could predict the HVA current evoked by action potentials or other physiological responses. 2. Cells with short dendrites were chosen for study. Input resistance averaged 3.5 +/- 0.4 (SE) G omega. Specific membrane resistance averaged 51.9 +/- 6.8 K omega-cm2 on the basis of estimated membrane surface area. 3. Using 2 mM calcium in the extracellular solution, we evoked the HVA current by depolarizations positive to -45 mV from a holding potential of -60 mV, a potential where the low-threshold calcium current is fully inactivated. Maximum HVA current amplitude (484.9 +/- 42.3 pA) occurred near -15 mV. The evoked current was completely and reversibly blocked by 200 microM cadmium. 4. Tail current amplitude at a fixed potential increased as a sigmoidal function of prepulse potential. A plot of normalized tail current amplitude, taken as the fraction of HVA channels open at each prepulse potential, was best described by a Boltzmann function (maximum slope: e-fold per 11.3 mV; half activation: -24.6 mV) raised to the power of 2. This relation was not altered by extracellular application of 5 microM nifedipine or 10 microM omega-conotoxin, each of which reduced a separate component of the HVA current uniformly at all potentials. We conclude that the pharmacologically separable components of the HVA current do not differ significantly in voltage dependence. 5. The time course of current onset during a step depolarization was best described by second-order activation kinetics. Activation time constants ranged from a maximum of 1.2 ms at -40 mV to 0.3 ms at +25 mV. Neither activation nor tail current time constants were altered by extracellular application of 5 microM nifedipine or 10 microM omega-conotoxin. After application of 1 microM Bay K 8644 tail current decay was best described by a fast time constant similar to control values and a slow time constant. We conclude that the pharmacologically separable components of the HVA current in these neurons do not differ significantly in kinetics.(ABSTRACT TRUNCATED AT 400 WORDS)


Subject(s)
Calcium Channels/metabolism , Cerebral Cortex/metabolism , Pyramidal Cells/metabolism , 3-Pyridinecarboxylic acid, 1,4-dihydro-2,6-dimethyl-5-nitro-4-(2-(trifluoromethyl)phenyl)-, Methyl ester/pharmacology , Action Potentials/drug effects , Animals , Cadmium/pharmacology , Calcium Channel Blockers/pharmacology , Calcium Channels/drug effects , Cerebral Cortex/cytology , Cerebral Cortex/drug effects , Dendrites/drug effects , Dendrites/metabolism , Electric Stimulation , Electrophysiology , In Vitro Techniques , Ion Channel Gating/drug effects , Kinetics , Nifedipine/pharmacology , Peptides/pharmacology , Pyramidal Cells/drug effects , Rats , omega-Conotoxin GVIA
15.
J Neurophysiol ; 69(5): 1596-606, 1993 May.
Article in English | MEDLINE | ID: mdl-8389832

ABSTRACT

1. Ca2+ currents were investigated in neurons acutely isolated from adult human temporal neocortex. The aim was to compare the basic characteristics of the currents with those previously described in animals and to examine the effects of dihydropyridine Ca2+ antagonists and antiepileptic drugs. The tissue, obtained from patients undergoing temporal lobe surgery for medically intractable epilepsy, was sliced, incubated in papain, and triturated. 2. Most of the isolated neurons (34 of 36) were judged to be pyramidal cells by their morphology. Whole-cell voltage-clamp recordings revealed two components of Ca2+ current: 1) a low-threshold (T-type) current that was transient, small in amplitude, and required hyperpolarization more negative than -70 mV for removal of inactivation and 2) a high-threshold current that was slowly inactivating and was available for activation from more positive potentials. The characteristics of the Ca2+ currents were very similar to those in the neocortical neurons of young rats, although the low-threshold current was less prominent in the human cells. 3. Subcomponents of the high-threshold current were identified by pharmacology. About 20% of the peak current was blocked by omega-conotoxin GVIA (presumed N current) and 40-50% of the peak current was blocked by micromolar concentrations of the dihydropyridine Ca2+ antagonists nifedipine and nimodipine (presumed L current). In two neurons tested with a range of nimodipine concentrations, the threshold for suppression of the high-threshold current was approximately 10 nM. 4. The antiepileptic agents ethosuximide, carbamazepine, and valproate did not affect the Ca2+ currents at therapeutically relevant concentrations. Phenytoin marginally reduced the low- and high-threshold Ca2+ currents at 8 microM (a concentration corresponding to the upper therapeutic range). The results do not support the hypothesis that inhibition of Ca2+ currents in neocortical pyramidal neurons is a major action of these drugs.


Subject(s)
Calcium Channels/physiology , Synaptic Transmission/physiology , Temporal Lobe/physiopathology , Adolescent , Adult , Anticonvulsants/pharmacology , Calcium/physiology , Calcium Channels/drug effects , Culture Techniques , Dose-Response Relationship, Drug , Epilepsy, Temporal Lobe/physiopathology , Female , Humans , Male , Membrane Potentials/drug effects , Membrane Potentials/physiology , Neurons/drug effects , Neurons/physiology , Nifedipine/pharmacology , Pyramidal Tracts/drug effects , Pyramidal Tracts/physiopathology , Synaptic Transmission/drug effects , Temporal Lobe/drug effects
16.
J Neurosci ; 13(2): 660-73, 1993 Feb.
Article in English | MEDLINE | ID: mdl-8381170

ABSTRACT

The kinetic behavior of brain Na+ channels was studied in pyramidal cells from rat and cat sensorimotor cortex using either the thin slice preparation or acutely isolated neurons. Single-channel recordings were obtained in the cell-attached and inside-out configuration of the patch-clamp technique. Na+ channels had a conductance of about 16 pS. Patches always contained several Na+ channels, usually 4-12. In both preparations, long depolarizing pulses revealed two distinct patterns of late Na+ channel activity following transient openings. (1) Na+ channels displayed sporadic brief late openings sometimes clustered to "minibursts" of 10-40 msec. These events occurred at a low frequency, yielding open probability (NPo) values below 0.01 (mean = 0.0034). (2) In the second gating mode, an individual Na+ channel in the patch failed to inactivate and produced a burst of openings often lasting to the end of the pulse. This behavior was observed in about 1% of depolarizations. Shifts to the bursting mode were usually confined to a single 400 msec pulse, but rarely occurred during two or more consecutive pulses applied at 2 sec intervals. Sustained bursts did not require preceding transient openings to occur since they were also observed during slow depolarizing voltage ramps. The similar incidence of inactivation failures in cell-attached versus inside-out recordings suggests that the bursting mode is a property of the channel and/or adjacent membrane-bound structures. Calculations indicate that brief late openings and rare sustained bursts suffice to generate a small but significant whole-cell current. Since the Na+ channels mediating early, brief late, and sustained openings were identical in terms of their elementary electrical properties, we propose that the fast and the persistent Na+ currents of cortical pyramidal cells are generated by an electrophysiologically uniform population of Na+ channels that can individually switch between different gating modes.


Subject(s)
Ion Channel Gating/physiology , Motor Cortex/physiology , Neurons/physiology , Sodium Channels/physiology , Animals , Cats , Electric Conductivity , Ion Channel Gating/drug effects , Kinetics , Lidocaine/pharmacology , Rats
17.
J Neurophysiol ; 69(1): 290-2, 1993 Jan.
Article in English | MEDLINE | ID: mdl-8381860

ABSTRACT

1. Whole-cell recordings were performed on acutely isolated pyramidal neurons from rat sensorimotor cortex 2 to 21 days postnatal to study the expression of a tetrodotoxin (TTX) sensitive, voltage dependent, persistent Na+ current (INaP) during different stages of postnatal development. 2. INaP was activated positive to about -60 mV and attained its peak amplitude between -40 and -35 mV. Activation of INaP did not require preceding activation of the transient Na+ current. 3. Peak INaP amplitudes showed a three-fold increase over the first three postnatal weeks, starting from 60.7 +/- 7.5 (SE) pA (n = 6) at postnatal day (P) 2-P5 and reaching 189.1 +/- 20.4 pA (n = 13) at P17-P21. 4. Measurements of peak INaP density, which took concomitant cell growth into account, revealed that a considerable current density already existed in very young neurons (P2-P5: 4.3 +/- 1.0 microA/cm2, n = 6) when compared with INaP density in early adult neurons (P17 - P21: 8.9 +/- 0.8 microA/cm2, n = 5). 5. Our data provide the first direct evidence for the presence of a significant INaP density during early postnatal development of neocortical neurons indicating that this current should play a role in the control of intrinsic excitability at this age.


Subject(s)
Cell Differentiation/physiology , Sodium Channels/physiology , Sodium/physiology , Somatosensory Cortex/cytology , Synaptic Transmission/physiology , Animals , Animals, Newborn , Membrane Potentials/physiology , Neurons/cytology , Rats
18.
J Neurophysiol ; 68(3): 833-42, 1992 Sep.
Article in English | MEDLINE | ID: mdl-1432051

ABSTRACT

1. The effects of metabotropic glutamate receptor (mGluR) stimulation on whole-cell Ca2+ currents were studied in pyramidal neurons isolated from the dorsal frontoparietal neocortex of rat. The selective mGluR agonist cis-(+/-)-1-aminocyclopentane-1,3-dicarboxylic acid [trans-ACPD (100 microM)] suppressed the peak high-threshold Ca2+ current by 21 +/- 1.7% (mean +/- SE) in 40 of 43 cells from 10- to 21-day-old rats. Consistent with previous findings for mGluR, glutamate, quisqualate, and ibotenate [but not alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)] reduced the Ca2+ currents, and the responses were not blocked by the ionotropic glutamate receptor antagonists 6-cyano-7-nitro-quinoxaline-2,3-dione (CNQX) and DL-2-amino-5-phosphonovaleric acid (APV). EC50S for Ca2+ current suppression were 29 nM for quisqualate, 2.3 microM for glutamate, and 13 microM for trans-ACPD. 2. The low-threshold Ca2+ current was not modulated by trans-ACPD. The component of the high-threshold CA2+ current suppressed by mGluR was determined by pharmacology; the responses were not affected by omega-conotoxin GVIA but were occluded by the dihydropyridine Ca2+ antagonist nifedipine. Ca2+ tail currents prolonged by the dihydropyridine Ca2+ agonist (+)-SDZ 202-79] were suppressed by mGluR stimulation in parallel with the peak current. These findings strongly suggest that L-type Ca2+ channels are modulated by mGluR. 3. In neurons dialyzed with 100 microM guanosine 5'-(gamma-thio)triphosphate (GTP-gamma-S), Ca2+ current suppression was elicited by the first application of trans-ACPD (in 5 of 6 cells), but not by subsequent applications. Responses in neurons dialyzed with 2 mM guanosine 5'-(beta-thio)diphosphate (GDP-beta-S) were significantly smaller than controls. The results are consistent with mGluR acting via linkage to a G protein. 4. The responses to mGluR agonists were smaller when the external Ca2+ was replaced by Ba2+, indicating that some part of the mechanism underlying the current suppression is Ca2+ dependent. Because mGluR stimulates phosphoinositide turnover and release of Ca2+ from intracellular stores in other types of neurons, the possibility of released Ca2+ mediating inactivation of Ca2+ channels was considered. However, the Ca2+ current suppression was not attenuated by strong intracellular Ca2+ buffering [20 mM bis-(o-aminophenoxy)-N,N,N',N'-tetraacetic acid (BAPTA)], by dialysis with 100 microM inositol-1,4,5-triphosphate (IP3), or by external application of 1 microM thapsigargin. 5. We conclude that in neocortical neurons, one action of mGluR is to suppress the component of high-threshold Ca2+ current conducted by L-type Ca2+ channels.(ABSTRACT TRUNCATED AT 400 WORDS)


Subject(s)
Calcium/physiology , Cerebral Cortex/physiology , Neurons/physiology , Receptors, Glutamate/metabolism , Animals , Barium/pharmacology , Cell Separation , Cerebral Cortex/cytology , Differential Threshold , Electrophysiology , Guanine Nucleotides/pharmacology , Rats , Receptors, Glutamate/physiology
19.
Neuroscience ; 47(3): 571-8, 1992.
Article in English | MEDLINE | ID: mdl-1316566

ABSTRACT

Large neurons from layer V in a slice preparation of cat sensorimotor cortex were impaled with microelectrodes containing KCl plus different concentrations of the Ca2+ chelator 1,2-bis(o-aminophenoxy)ethane-N,N,N',N'-tetra-acetic acid (BAPTA) or two of its derivatives. Impalement with electrodes containing high BAPTA (200 mM) quickly abolished Ca(2+)-dependent afterhyperpolarizations. Spike parameters were normal, but the usual time- and voltage-dependent rectification of subthreshold membrane potential was absent. Normally, this rectification results from activation of two voltage-gated currents, the persistent sodium current (INaP) and the hyperpolarizing inward rectifier current (Ih). Both of these currents were absent during voltage clamp with high BAPTA microelectrodes. Impalement with electrodes containing low BAPTA (2 mM) or derivatives caused a different effect. Injection of a 1-s current pulse evoked phasic firing instead of the tonic firing seen normally. Both the amplitude and the duration of the Ca(2+)-dependent afterhypolarization that followed repetitive firing were much greater than normal. The effectiveness of BAPTA derivatives in altering afterhyperpolarizations and firing properties were similar to their effectiveness in chelating Ca2+. It is assumed that the BAPTA effects result from reduction of intracellular Ca2+ concentration. Results with high BAPTA suggest that (i) both INaP and Ih require a minimal intracellular calcium concentration for normal expression, and that (ii) these voltage-gated currents may be modulated by changes in intracellular calcium concentration. Results with low BAPTA suggest that a small reduction of intracellular calcium concentration preferentially enhances a slow, Ca(2+)-dependent K+ current which then dominates the firing properties of the cell. The transformed firing properties resemble those of hippocampal pyramidal neurons.(ABSTRACT TRUNCATED AT 250 WORDS)


Subject(s)
Calcium Channels/physiology , Calcium/physiology , Cerebral Cortex/metabolism , Chelating Agents/pharmacology , Neurons/metabolism , Animals , Calcium Channels/drug effects , Cats , Cerebral Cortex/cytology , Egtazic Acid/analogs & derivatives , Egtazic Acid/pharmacology , Electrophysiology , In Vitro Techniques , Microelectrodes , Neurons/drug effects , Potassium Chloride/pharmacology
20.
J Neurophysiol ; 67(1): 216-26, 1992 Jan.
Article in English | MEDLINE | ID: mdl-1313080

ABSTRACT

1. Ca(2+)-dependent K+ currents were studied in large pyramidal neurons (Betz cells) from layer V of cat sensorimotor cortex by use of an in vitro brain slice and single microelectrode voltage clamp. The Ca(2+)-dependent outward current was taken as the difference current obtained before and after blockade of Ca2+ influx. During step depolarizations in the presence of tetrodotoxin (TTX), this current exhibited a fast onset of variable amplitude and a prominent slowly developing component. 2. The Ca(2+)-dependent outward current first appeared when membrane potential was stepped positive to -40 mV. Downsteps from a holding potential of -40 mV revealed little or no time-, voltage-, or Ca(2+)-dependent current. When membrane potential was stepped positive to -40 mV, a prolonged Ca(2+)-dependent outward tail current followed repolarization. The decay of this tail current at -40 mV was best described by a single exponential function having a time constant of 275 +/- 75 (SD) ms. The tail current reversed at 96 +/- 5 mV in 3 mM extracellular K+ concentration ([K+]o) and at more positive potentials when [K+]o was raised, suggesting that it was carried predominantly by K+. 3. The Ca(2+)-dependent K+ current consisted of two pharmacologically separable components. The slowly developing current was insensitive to 1 mM tetraethylammonium (TEA), but a substantial portion was reduced by 100 nM apamin. Most of the remaining current was blocked by the addition of isoproterenol (20-50 microM) or muscarine (10-20 microM). 4. The time courses of the apamin- and transmitter-sensitive components were similar when activated by step depolarizations in voltage clamp, but they were quite different when activated by a train of action potentials. Applying the voltage clamp at the end of a train of 90 spikes (evoked at 100-200 Hz) resulted in an Ca(2+)-dependent K+ current with a prominent rapidly decaying portion (time constant approximately 50 ms at -64 mV) and a smaller slowly decaying portion (time constant approximately 500 ms at -64 mV). The rapidly decaying portion was blocked by apamin (50-200 nM), and the slowly decaying portion was blocked by isoproterenol (20-50 microM). 5. When recorded with microelectrodes containing 2 mM dimethyl-bis-(o-aminophenoxy)-N,N,N',N'-tetraacetic acid (dimethyl-BAPTA), which causes prolonged afterhyperpolarizations, the Ca(2+)-dependent K+ current evoked by step depolarizations had an extremely slow onset and decay. The current recorded after a train of evoked spikes had a similar slow decay.(ABSTRACT TRUNCATED AT 400 WORDS)


Subject(s)
Calcium/physiology , Motor Cortex/physiology , Neurons/physiology , Potassium Channels/physiology , Animals , Apamin/pharmacology , Calcium Channels/drug effects , Cats , Egtazic Acid/analogs & derivatives , Egtazic Acid/pharmacology , In Vitro Techniques , Isoproterenol/pharmacology , Membrane Potentials/drug effects , Microelectrodes , Motor Cortex/cytology , Motor Cortex/metabolism , Neurons/drug effects , Potassium Channels/drug effects , Pyramidal Tracts/cytology , Pyramidal Tracts/drug effects , Tetraethylammonium Compounds/pharmacology , Tetrodotoxin/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...