Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Evol Appl ; 15(3): 459-470, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35386400

ABSTRACT

Coastal Indigenous communities that rely on subsistence harvests are uniquely vulnerable to declines in nearshore species. The basket cockle Clinocardium nuttallii is among the favored foods of Indigenous people along the northwest Pacific coast of North America, yet localized declines in their abundance have led to interest in stock enhancement efforts. We used a population genomics approach to examine potential risks associated with stock enhancement of C. nuttallii in the southern Salish Sea, a large inland estuary that includes Puget Sound. More than 8000 single nucleotide polymorphisms across 349 individuals at 12 locations were assembled de novo using restriction site-associated DNA sequencing. Results indicated that C. nuttallii within the southern Salish Sea were distinct from those along the outer Pacific coast (F ST = 0.021-0.025). Within the southern Salish Sea, C. nuttallii populations appear to be well-connected despite numerous potential impediments to gene flow; Hood Canal, which experiences the lowest flushing rates of all Puget Sound sub-basins, was a minor exception to this strong connectivity. We found evidence of isolation by distance within the southern Salish Sea, but the slope of this relationship was shallow, and F ST values were low (F ST = 0.001-0.004). Meanwhile, outlier analyses did not support the hypothesis that southern Salish Sea sub-populations are locally adapted. Estimates of effective population size had no upper bound, suggesting potentially very high adaptive capacity in C. nuttallii, but also making it difficult to assess potential reductions in effective population size resulting from stock enhancement. We present several strategies to augment cockle populations for subsistence harvest that would limit risk to the genetic diversity of wild cockle populations.

2.
Ecol Appl ; 30(3): e02060, 2020 04.
Article in English | MEDLINE | ID: mdl-31863716

ABSTRACT

Predicting how populations will respond to ocean change across generations is critical to effective conservation of marine species. One emerging factor is the influence of parental exposures on offspring phenotype, known as intergenerational carryover effects. Parental exposure may deliver beneficial or detrimental characteristics to offspring that can influence larval recruitment patterns, thus shaping how populations and community structure respond to ocean change. Impacts of adult exposure to elevated winter temperature and pCO2 on reproduction and offspring viability were examined in the Olympia oyster (Ostrea lurida) using three populations of adult, hatchery-reared O. lurida, plus an additional cohort spawned from one of the populations. Oysters were sequentially exposed to elevated temperature (+4°C, at 10°C), followed by elevated pCO2 (+2,204 µatm, at 3,045 µatm) during winter months. Male gametes were more developed after elevated temperature exposure and less developed after high pCO2 exposure, but there was no impact on female gametes or sex ratios. Oysters previously exposed to elevated winter temperature released larvae earlier, regardless of pCO2 exposure. Those exposed to elevated winter temperature as a sole treatment released more larvae on a daily basis but, when also exposed to high pCO2 , there was no effect. These combined results indicate that elevated winter temperature accelerates O. lurida spermatogenesis, resulting in earlier larval release and increased production, with elevated pCO2 exposure negating effects of elevated temperature. Altered recruitment patterns may therefore follow warmer winters due to precocious spawning, but these effects may be masked by coincidental high pCO2 . Offspring were reared in common conditions for 1 yr, then deployed for 3 months in four estuarine bays with distinct environmental conditions. Offspring of parents exposed to elevated pCO2 had higher survival rates in two of the four bays. This carryover effect demonstrates that parental conditions can have substantial ecologically relevant impacts that should be considered when predicting impacts of environmental change. Furthermore, Olympia oysters may be more resilient in certain environments when progenitors are pre-conditioned in stressful conditions. Combined with other recent studies, our work suggests that the Olympia may be more equipped than other oysters for the challenge of a changing ocean.


Subject(s)
Ostreidae , Seawater , Animals , Bays , Carbon Dioxide/adverse effects , Female , Gold Alloys , Hydrogen-Ion Concentration , Male , Temperature
4.
Glob Chang Biol ; 19(6): 1884-96, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23505245

ABSTRACT

Ocean acidification represents a threat to marine species worldwide, and forecasting the ecological impacts of acidification is a high priority for science, management, and policy. As research on the topic expands at an exponential rate, a comprehensive understanding of the variability in organisms' responses and corresponding levels of certainty is necessary to forecast the ecological effects. Here, we perform the most comprehensive meta-analysis to date by synthesizing the results of 228 studies examining biological responses to ocean acidification. The results reveal decreased survival, calcification, growth, development and abundance in response to acidification when the broad range of marine organisms is pooled together. However, the magnitude of these responses varies among taxonomic groups, suggesting there is some predictable trait-based variation in sensitivity, despite the investigation of approximately 100 new species in recent research. The results also reveal an enhanced sensitivity of mollusk larvae, but suggest that an enhanced sensitivity of early life history stages is not universal across all taxonomic groups. In addition, the variability in species' responses is enhanced when they are exposed to acidification in multi-species assemblages, suggesting that it is important to consider indirect effects and exercise caution when forecasting abundance patterns from single-species laboratory experiments. Furthermore, the results suggest that other factors, such as nutritional status or source population, could cause substantial variation in organisms' responses. Last, the results highlight a trend towards enhanced sensitivity to acidification when taxa are concurrently exposed to elevated seawater temperature.


Subject(s)
Acids/chemistry , Global Warming , Marine Biology , Hydrogen-Ion Concentration , Oceans and Seas
5.
PLoS One ; 6(8): e22881, 2011.
Article in English | MEDLINE | ID: mdl-21857962

ABSTRACT

The global acidification of the earth's oceans is predicted to impact biodiversity via physiological effects impacting growth, survival, reproduction, and immunology, leading to changes in species abundances and global distributions. However, the degree to which these changes will play out critically depends on the evolutionary rate at which populations will respond to natural selection imposed by ocean acidification, which remains largely unquantified. Here we measure the potential for an evolutionary response to ocean acidification in larval development rate in two coastal invertebrates using a full-factorial breeding design. We show that the sea urchin species Strongylocentrotus franciscanus has vastly greater levels of phenotypic and genetic variation for larval size in future CO(2) conditions compared to the mussel species Mytilus trossulus. Using these measures we demonstrate that S. franciscanus may have faster evolutionary responses within 50 years of the onset of predicted year-2100 CO(2) conditions despite having lower population turnover rates. Our comparisons suggest that information on genetic variation, phenotypic variation, and key demographic parameters, may lend valuable insight into relative evolutionary potentials across a large number of species.


Subject(s)
Acids/chemistry , Evolution, Molecular , Mytilus/genetics , Seawater/chemistry , Strongylocentrotus/genetics , Adaptation, Physiological/genetics , Animals , Biodiversity , Carbon Dioxide/metabolism , Carbon Dioxide/pharmacology , Female , Genetic Variation , Hydrogen-Ion Concentration , Larva/drug effects , Larva/genetics , Larva/growth & development , Male , Mytilus/growth & development , Oceans and Seas , Phenotype , Selection, Genetic , Strongylocentrotus/growth & development , Time Factors
6.
Ecol Lett ; 14(9): E1-2, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21790935

ABSTRACT

It has been proposed that crustaceans should be excluded from a comparison of biological responses to ocean acidification among organisms with different calcium carbonate (CaCO3 ) forms in their calcified structures. We re-analysed our data without crustaceans and found high variation in organismal responses within CaCO3 categories. We conclude that the CaCO3 polymorph alone does not predict sensitivity, and a consideration of functional differences among organisms is necessary for predicting variation in response to acidification.


Subject(s)
Aquatic Organisms , Ecosystem , Hydrogen-Ion Concentration , Seawater/chemistry , Animals
7.
J Phycol ; 47(1): 25-35, 2011 Feb.
Article in English | MEDLINE | ID: mdl-27021707

ABSTRACT

High levels of intraspecific variability are often associated with HAB species, and this variability is likely an important factor in their competitive success. Heterosigma akashiwo (Hada) Hada ex Y. Hara et M. Chihara is an ichthyotoxic raphidophyte capable of forming dense surface-water blooms in temperate coastal regions throughout the world. We isolated four strains of H. akashiwo from fish-killing northern Puget Sound blooms in 2006 and 2007. By assessing numerous aspects of biochemistry, physiology, and toxicity, we were able to describe distinct ecotypes that may be related to isolation location, source population, or bloom timing. Contrasting elements among strains were cell size, maximum growth and photosynthesis rates, tolerance of low salinities, amino acid use, and toxicity to the ciliate grazer Strombidinopsis acuminatum (Fauré-Fremiet). In addition, the rDNA sequences and chloroplast genome of each isolate were examined, and while all rDNA sequences were identical, the chloroplast genome identified differences among the strains that tracked differences in ecotype. H. akashiwo strain 07A, which was isolated from an unusual spring bloom, had a significantly higher maximum potential photosynthesis rate (28.7 pg C · cell(-1) · h(-1) ) and consistently exhibited the highest growth rates. Strains 06A and 06B were not genetically distinct from one another and were able to grow on the amino acids glutamine and alanine, while the other two strains could not. Strain 07B, which is genetically distinct from the other three strains, exhibited the only nontoxic effect. Thus, molecular tools may support identification, tracking, and prediction of strains and/or ecotypes using distinctive chloroplast gene signatures.

8.
Ecol Lett ; 13(11): 1419-34, 2010 Nov.
Article in English | MEDLINE | ID: mdl-20958904

ABSTRACT

Ocean acidification is a pervasive stressor that could affect many marine organisms and cause profound ecological shifts. A variety of biological responses to ocean acidification have been measured across a range of taxa, but this information exists as case studies and has not been synthesized into meaningful comparisons amongst response variables and functional groups. We used meta-analytic techniques to explore the biological responses to ocean acidification, and found negative effects on survival, calcification, growth and reproduction. However, there was significant variation in the sensitivity of marine organisms. Calcifying organisms generally exhibited larger negative responses than non-calcifying organisms across numerous response variables, with the exception of crustaceans, which calcify but were not negatively affected. Calcification responses varied significantly amongst organisms using different mineral forms of calcium carbonate. Organisms using one of the more soluble forms of calcium carbonate (high-magnesium calcite) can be more resilient to ocean acidification than less soluble forms (calcite and aragonite). Additionally, there was variation in the sensitivities of different developmental stages, but this variation was dependent on the taxonomic group. Our analyses suggest that the biological effects of ocean acidification are generally large and negative, but the variation in sensitivity amongst organisms has important implications for ecosystem responses.


Subject(s)
Aquatic Organisms , Ecosystem , Hydrogen-Ion Concentration , Seawater/chemistry , Animals , Calcification, Physiologic , Calcium/metabolism , Oceans and Seas , Population Dynamics , Reproduction , Survival , Water Pollutants/toxicity
10.
Fam Pract Manag ; 9(4): 15; author reply 15, 2002 Apr.
Article in English | MEDLINE | ID: mdl-11993039
SELECTION OF CITATIONS
SEARCH DETAIL
...