Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 129(20): 205101, 2022 Nov 11.
Article in English | MEDLINE | ID: mdl-36462024

ABSTRACT

Accreting supermassive black holes can now be observed at the event-horizon scale at millimeter wavelengths. Current predictions for the image rely on hypotheses (fluid modeling, thermal electrons) which might not always hold in the vicinity of the black hole, so that a full kinetic treatment is in order. In this Letter, we describe the first 3D global general-relativistic particle-in-cell simulation of a black-hole magnetosphere. The system displays a persistent equatorial current sheet. Synthetic radio images are computed by ray-tracing synchrotron emission from nonthermal particles accelerated in this current sheet by magnetic reconnection. We identify several time-dependent features of the image at moderate viewing angles: a variable radius of the ring, and hot spots moving along it. In this regime, our model predicts that most of the flux of the image lies inside the critical curve. These results could help promote understanding of future observations of black-hole magnetospheres at improved temporal and spatial resolution.

2.
Phys Rev Lett ; 124(14): 145101, 2020 Apr 10.
Article in English | MEDLINE | ID: mdl-32338985

ABSTRACT

Black holes are known to launch powerful relativistic jets and emit highly variable gamma radiation. How these jets are loaded with plasma remains poorly understood. Spark gaps are thought to drive particle acceleration and pair creation in the black-hole magnetosphere. In this Letter, we perform 2D axisymmetric general-relativistic particle-in-cell simulations of a monopole black-hole magnetosphere with a realistic treatment of inverse Compton scattering and pair production. We find that the magnetosphere can self-consistently fill itself with plasma and activate the Blandford-Znajek mechanism. A highly time-dependent spark gap opens near the inner light surface, which injects pair plasma into the magnetosphere. These results may account for the high-energy activity observed in active galactic nuclei and explain the origin of plasma at the base of the jet.

SELECTION OF CITATIONS
SEARCH DETAIL
...