Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Chem B ; 110(47): 23888-97, 2006 Nov 30.
Article in English | MEDLINE | ID: mdl-17125355

ABSTRACT

The issue of the heterogeneity of boron doping in microcrystalline diamond films was addressed by four different methods: micro-Raman spectroscopy and Raman imaging, Kelvin probe force microscopy, conducting atomic force microscopy, and scanning electrochemical microscopy. The samples were commercially available films from Windsor Scientific, with an average boron concentration of about 5 x 10(20) cm(-3). In agreement with previous works, all of the methods showed that the boron uptake was nonuniform across the surface of the electrode. Two different types of regions were evidenced, with metallic or semiconducting properties that were characterized with different types of Raman spectra. The line shape of these spectra was strongly dependent on the excitation wavelength. Local variations in electroactivity were evidenced by the SECM curves, which are related to the electronic properties of the individual grains, which, in turn, are governed by the boron content of the individual crystallites. In this study, two different micro-Raman imaging techniques were used that reveal the grain structure of the films: the images constructed from the diamond line intensity perfectly reproduced the optical image obtained by illuminating the sample in reflection. The method also allows detection of the presence of nondiamond carbon, especially in the metallic parts of the samples. Other spectral features (intensity of the boron-related broad lines, as well as the frequency and width of the diamond line) were used to construct images. In every case, the grain structure of the film was revealed, as well as twinning within individual crystallites. All approaches revealed that no enhanced doping or boron depletion occurred at the grain boundaries.

2.
Microsc Microanal ; 12(4): 331-4, 2006 Aug.
Article in English | MEDLINE | ID: mdl-16842648

ABSTRACT

The carbon contents in carburized steels were investigated by electron probe microanalysis (EPMA) for a range of carbon levels in the solid solution less than 1 wt%. This article describes the difficulties encountered with the classic analytical procedure using the k ratio of X-ray intensities and the phi(rhoz) model. Here, a suitable calibration curve method is presented with emphasis on the metallographic study of standard specimens and on the carbon decontamination of samples.

SELECTION OF CITATIONS
SEARCH DETAIL
...