Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Nat Commun ; 13(1): 6547, 2022 11 01.
Article in English | MEDLINE | ID: mdl-36319635

ABSTRACT

Lipids are a structurally diverse class of biomolecules which can undergo a variety of chemical modifications. Among them, lipid (per)oxidation attracts most of the attention due to its significance in the regulation of inflammation, cell proliferation and death programs. Despite their apparent regulatory significance, the molecular repertoire of oxidized lipids remains largely elusive as accurate annotation of lipid modifications is complicated by their low abundance and often unknown, biological context-dependent structural diversity. Here, we provide a workflow based on the combination of bioinformatics and LC-MS/MS technologies to support identification and relative quantification of oxidized complex lipids in a modification type- and position-specific manner. The developed methodology is used to identify epilipidomics signatures of lean and obese individuals with and without type 2 diabetes. The characteristic signature of lipid modifications in lean individuals, dominated by the presence of modified octadecanoid acyl chains in phospho- and neutral lipids, is drastically shifted towards lipid peroxidation-driven accumulation of oxidized eicosanoids, suggesting significant alteration of endocrine signalling by oxidized lipids in metabolic disorders.


Subject(s)
Diabetes Mellitus, Type 2 , Tandem Mass Spectrometry , Humans , Chromatography, Liquid , Tandem Mass Spectrometry/methods , Workflow , Lipids/chemistry , Plasma/chemistry
2.
Eur J Pharm Biopharm ; 177: 241-248, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35840072

ABSTRACT

The availability of rapid methods that can accurately define and quantify biopharmaceutical critical quality attributes has been the driving force for the implementation of mass spectrometry techniques throughout the development and production pipeline. While the multi-attribute method (MAM) has become widely adopted and developed, some critical information cannot be monitored through this workflow, such as correct chain assembly or the presence of fragments or aggregates. In this study, we combine intact protein mass spectrometry and the multi-attribute method to create an intact multi-attribute method - or iMAM. Using a CFR Part 11 compliant data system, we evaluated the proposed workflow using several intact analysis approaches under both denaturing and native conditions. As for the standard MAM approach, iMAM involves the generation of an intact protein target workbook which is created from the analysis of a reference sample, with ID confirmation obtained from deconvolution results and chromatographic retention times, while quantitation is obtained from the intensities of the m/z of most abundant charge states. The created processing method is then applied to the analysis of subsequent samples. New peak detection can also be performed, monitoring the number of components revealed after each analysis. The entire data process can be automated to generate a report within the chromatography data system software. Three case studies presented herein show the potential of iMAM for implementation at different stages of the production pipeline, from product development to stability testing and batch release.


Subject(s)
Antibodies, Monoclonal , Antineoplastic Agents, Immunological , Antibodies, Monoclonal/chemistry , Chromatography, Liquid/methods , Clergy , Humans , Mass Spectrometry/methods
3.
Anal Chem ; 94(20): 7339-7349, 2022 05 24.
Article in English | MEDLINE | ID: mdl-35549087

ABSTRACT

Large RNA including mRNA (mRNA) has emerged as an important new class of therapeutics. Recently, this has been demonstrated by two highly efficacious vaccines based on mRNA sequences encoding for a modified version of the SARS-CoV-2 spike protein. There is currently significant demand for the development of new and improved analytical methods for the characterization of large RNA including mRNA therapeutics. In this study, we have developed an automated, high-throughput workflow for the rapid characterization and direct sequence mapping of large RNA and mRNA therapeutics. Partial RNase digestions using RNase T1 immobilized on magnetic particles were performed in conjunction with high-resolution liquid chromatography-mass spectrometry analysis. Sequence mapping was performed using automated oligoribonucleotide annotation and identifications based on MS/MS spectra. Using this approach, a >80% sequence of coverage of a range of large RNAs and mRNA therapeutics including the SARS-CoV-2 spike protein was obtained in a single analysis. The analytical workflow, including automated sample preparation, can be completed within 90 min. The ability to rapidly identify, characterize, and sequence map large mRNA therapeutics with high sequence coverage provides important information for identity testing, sequence validation, and impurity analysis.


Subject(s)
COVID-19 , Tandem Mass Spectrometry , COVID-19/therapy , Humans , RNA/chemistry , RNA, Messenger/genetics , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus , Tandem Mass Spectrometry/methods
4.
Cell Rep Med ; 2(10): 100407, 2021 10 19.
Article in English | MEDLINE | ID: mdl-34755127

ABSTRACT

Obesity, characterized by expansion and metabolic dysregulation of white adipose tissue (WAT), has reached pandemic proportions and acts as a primer for a wide range of metabolic disorders. Remodeling of WAT lipidome in obesity and associated comorbidities can explain disease etiology and provide valuable diagnostic and prognostic markers. To support understanding of WAT lipidome remodeling at the molecular level, we provide in-depth lipidomics profiling of human subcutaneous and visceral WAT of lean and obese individuals. We generate a human WAT reference lipidome by performing tissue-tailored preanalytical and analytical workflows, which allow accurate identification and semi-absolute quantification of 1,636 and 737 lipid molecular species, respectively. Deep lipidomic profiling allows identification of main lipid (sub)classes undergoing depot-/phenotype-specific remodeling. Previously unanticipated diversity of WAT ceramides is now uncovered. AdipoAtlas reference lipidome serves as a data-rich resource for the development of WAT-specific high-throughput methods and as a scaffold for systems medicine data integration.


Subject(s)
Adipose Tissue, White/metabolism , Lipidomics , Aged , Calibration , Ceramides/chemistry , Ceramides/metabolism , Chemical Fractionation , Ethanolamines/chemistry , Ethanolamines/metabolism , Fatty Acids, Unsaturated/metabolism , Female , Humans , Lipids/isolation & purification , Male , Middle Aged , Phenotype , Plasmalogens/metabolism , Triglycerides/metabolism , Up-Regulation
5.
J Am Soc Mass Spectrom ; 31(2): 463-466, 2020 Feb 05.
Article in English | MEDLINE | ID: mdl-32031403

ABSTRACT

Natural lipidomes represent a complex mixture of lipid molecular species with a variety of biological and signaling functions. Modern mass spectrometry (MS)-based analytical platforms are often used to resolve the complexity of natural lipidomes. The quantitative transfer of lipid molecular species in the gas phase during the electrospray ionization required for MS analysis might be challenged by lipid in-source fragmentation (ISF) hampering their accurate identification and quantification. Here we evaluated the effect of transmission radio frequency (RF) levels and ion transfer temperatures (ITTs) on the analysis of four different lipids (ceramide, cholesteryl ester, phosphatidylethanolamine, and triacylglyceride) ionized in positive ion mode on three different Orbitrap-based platforms. ITT and RF levels were ramped in a systematic way to determine the best settings, allowing the most sensitive detection accompanied by the lowest ISF of a lipid. The extent of the ISF was shown to depend on the configurations of the transmission devices (S-lens vs letterbox/ion funnel) at defined RF and ITT levels for each studied lipid class. We provide here the recommendations for reducing the extent of lipid ISF without a significant loss in sensitivity for Q Exactive HF, Q Exactive HF-X, and Orbitrap Fusion Lumos platforms.


Subject(s)
Lipidomics/methods , Lipids/analysis , Lipids/chemistry , Spectrometry, Mass, Electrospray Ionization/methods , Ceramides , Cholesterol Esters , Phosphatidylethanolamines , Sensitivity and Specificity
6.
J Proteome Res ; 18(10): 3689-3702, 2019 10 04.
Article in English | MEDLINE | ID: mdl-31478673

ABSTRACT

Posttranslational modifications of proteins play fundamental roles in protein function in health and disease. More than 600 different types of posttranslational modifications are known, many of them being of extremely low abundance, causing subtle changes in physicochemical properties and posing an extreme challenge to analytical methods required for their characterization. Here, we report the development of a novel pH gradient-based anion-exchange chromatography method, which can be directly interfaced to Orbitrap-based mass spectrometry for the comprehensive characterization of proteoforms at the intact protein level under native conditions. The analysis of four different proteins demonstrates outstanding chromatographic selectivity, while the mass spectra obtained are of excellent quality enabling the identification of proteoforms, including near isobaric variants, spanning 4 orders of magnitude in abundance. An in-depth analysis of ovalbumin from chicken egg white yields the identification and relative quantification of more than 150 different proteoforms, including fragmented and dimeric forms. More than 20 different ovalbumin charge variants together with their glycoform distributions are identified and quantified, many of which have not been reported previously.


Subject(s)
Ovalbumin/analysis , Proteins/analysis , Proteomics/methods , Animals , Anions , Chickens , Chromatography, Ion Exchange , Humans , Hydrogen-Ion Concentration , Mass Spectrometry , Protein Processing, Post-Translational
7.
Free Radic Biol Med ; 144: 156-166, 2019 11 20.
Article in English | MEDLINE | ID: mdl-31212065

ABSTRACT

Oxidized LDL (oxLDL) has been shown to play a crucial role in the onset and development of cardiovascular disorders. The study of oxLDL, as an initiator of inflammatory cascades, led to the discovery of a variety of oxidized phospholipids (oxPLs) responsible for pro-inflammatory actions. Oxidized 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine (PAPC) is frequently used by the scientific community as a representative oxPL mixture to study the biological effects of oxidized lipids, due to the high abundance of PAPC in human tissues and the biological activities of oxidized arachidonic acids derivatives. Most studies focusing on oxPAPC effects rely on in-house prepared mixtures of oxidized species obtained by exposing PAPC to air oxidation. Here, we described a multi-laboratory evaluation of the compounds in oxPAPC by LC-MS/MS, focusing on the identification and relative quantification of the lipid peroxidation products (LPPs) formed. PAPC was air-oxidized in four laboratories using the same protocol for 0, 48, and 72 h. It was possible to identify 55 different LPPs with unique elemental composition and characterize different structural isomeric species within these. The study showed good intra-sample reproducibility and similar qualitative patterns of oxidation, as the most abundant LPPs were essentially the same between the four laboratories. However, there were substantial differences in the extent of oxidation, i.e. the amount of LPPs relative to unmodified PAPC, at specific time points. This shows the importance of characterizing air-oxidized PAPC preparations before using them for testing biological effects of oxidized lipids, and may explain some variability of effects reported in the literature.


Subject(s)
Air/analysis , Laboratory Proficiency Testing/standards , Phosphatidylcholines/isolation & purification , Terminology as Topic , Chromatography, Reverse-Phase , Europe , Humans , Lipid Peroxidation , Observer Variation , Phosphatidylcholines/chemistry , Phosphatidylcholines/classification , Principal Component Analysis , Reproducibility of Results , Solutions , Tandem Mass Spectrometry
8.
J Am Soc Mass Spectrom ; 30(9): 1621-1630, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31222675

ABSTRACT

Over 1500 different lipids have been reported in human plasma at the sum composition level. Yet the number of unique lipids present is surely higher, once isomeric contributions from double bond location(s) and fatty acyl regiochemistry are considered. In order to resolve this ambiguity, herein, we describe the incorporation of ozone-induced dissociation (OzID) into data-independent shotgun lipidomics workflows on a high-resolution hybrid quadrupole-Orbitrap platform. In this configuration, [M + Na]+ ions generated by electrospray ionization of a plasma lipid extract were transmitted through the quadrupole in 1 Da segments. Reaction of mass-selected lipid ions with ozone in the octopole collision cell yielded diagnostic ions for each double bond position. The increased ozone concentration in this region significantly improved ozonolysis efficiency compared with prior implementations on linear ion-trap devices. This advancement translates into increased lipidome coverage and improvements in duty cycle for data-independent MS/MS analysis using shotgun workflows. Grouping all precursor ions with a common OzID neutral loss enables straightforward classification of the lipidome by unsaturation position (with respect to the methyl terminus). Two-dimensional maps obtained from this analysis provide a powerful visualization of structurally related lipids and lipid isomer families within plasma. Global profiling of lipid unsaturation in plasma extracts reveals that most unsaturated lipids are present as isomeric mixtures. These new insights provide a unique picture of underlying metabolism that could in the future provide novel indicators of health and disease.


Subject(s)
Lipids/blood , Lipids/chemistry , Ozone/chemistry , Tandem Mass Spectrometry/methods , Cholesterol Esters/blood , Cholesterol Esters/chemistry , Humans , Spectrometry, Mass, Electrospray Ionization/instrumentation , Spectrometry, Mass, Electrospray Ionization/methods , Tandem Mass Spectrometry/instrumentation , Workflow
9.
Free Radic Biol Med ; 144: 144-155, 2019 11 20.
Article in English | MEDLINE | ID: mdl-31150763

ABSTRACT

The aminophospholipids (APL), phosphatidylethanolamine (PE) and phosphatidylserine (PS) are widely present in cell membranes and lipoproteins. Glucose and reactive oxygen species (ROS), such as the hydroxyl radical (•OH), can react with APL leading to an array of oxidised, glycated and glycoxidised derivatives. Modified APL have been implicated in inflammatory diseases and diabetes, and were identified as signalling molecules regulating cell death. However, the biological relevance of these molecules has not been completely established, since they are present in very low amounts, and new sensitive methodologies are needed to detect them in biological systems. Few studies have focused on the characterisation of APL modifications using liquid chromatography-tandem mass spectrometry (LC-MS/MS), mainly using C5 or C18 reversed phase (RP) columns. In the present study, we propose a new analytical approach for the characterisation of complex mixtures of oxidised, glycated and glycoxidised PE and PS. This LC approach was based on a reversed-phase C30 column combined with high-resolution MS, and higher energy C-trap dissociation (HCD) MS/MS. C30 RP-LC separated short and long fatty acyl oxidation products, along with glycoxidised APL bearing oxidative modifications on the glucose moiety and the fatty acyl chains. Functional isomers (e.g. hydroxy-hydroperoxy-APL and tri-hydroxy-APL) and positional isomers (e.g. 9-hydroxy-APL and 13-hydroxy-APL) were also discriminated by the method. HCD fragmentation patterns allowed unequivocal structural characterisation of the modified APL, and are translatable into targeted MS/MS fingerprinting of the modified derivatives in biological samples.


Subject(s)
Glucose/chemistry , Glycerophosphates/analysis , Lysophospholipids/analysis , Phosphatidylethanolamines/analysis , Phosphatidylserines/analysis , Chromatography, Reverse-Phase/methods , Glycerophosphates/chemistry , Glycosylation , Humans , Lysophospholipids/chemistry , Oxidation-Reduction , Phosphatidylethanolamines/chemistry , Phosphatidylserines/chemistry , Solutions , Tandem Mass Spectrometry
10.
Chem Phys Lipids ; 221: 120-127, 2019 07.
Article in English | MEDLINE | ID: mdl-30940444

ABSTRACT

Natural lipidomes are characterized by extremely high complexity and dynamic range of lipid concentrations. Furthermore, high diversity of lipid physicochemical properties requires high resolving powers for both chromatographic and mass spectrometric analytical platforms. Reverse-phase chromatography coupled with data-dependent MS/MS acquisition is one of the most popular techniques in untargeted lipidomics. Optimal method should provide good chromatographic separation and resolution, reproducibility, selectivity and sensitivity. Here, we developed and set-up a RPLC-MS/MS workflow capable of resolving complex mixtures of lipids in 32 min of analysis. Human blood plasma was chosen as a representative complex natural lipidome with large variance of lipid classes, species and lipid concentrations. Lipids were separated by RPLC on five different reverse phase columns with different types of stationary phase particles, size and chemistry. High mass accuracy MS analysis and data-dependent MS/MS analysis were performed using a Q Exactive™ HF Hybrid Quadrupole-Orbitrap™ Mass Spectrometer to identify individual lipid molecular species. This workflow was applied to evaluate the separation capability of each column and to identify the lipidomics profile in highly complex biological samples. As a result, we report more than 600 lipid species covering 18 lipid classes in human blood plasma and provide suggestions to the selection of the appropriate reverse phase column for the analysis of specific lipidomes.


Subject(s)
High-Throughput Screening Assays , Lipidomics , Lipids/blood , Chromatography, Liquid , Humans , Mass Spectrometry
11.
Free Radic Res ; 52(8): 896-906, 2018 Aug.
Article in English | MEDLINE | ID: mdl-30035649

ABSTRACT

Reactive carbonyl species (RCS) are cytotoxic molecules that originate from lipid peroxidation and sugar oxidation. Natural derivatives can be an attractive source of potential RCS scavenger. However, the lack of analytical methods to screen and identify bioactive compounds contained in complex matrices has hindered their identification. The sequestering actions of various rice extracts on RCS have been determined using ubiquitin and 4-hydroxy-2-nonenal (HNE) as a protein and RCS model, respectively. Black rice with giant embryo extract was found to be the most effective among various rice varieties. The identification of bioactive compounds was then carried out by an isotopic signature profile method using the characteristic isotopic ion cluster generated by the mixture of HNE: 2H5-HNE mixed at a 1:1 stoichiometric ratio. An in-house database was used to obtain the structures of the possible bioactive components. The identified compounds were further confirmed as HNE sequestering agents through HPLC-UV analysis.


Subject(s)
Anthocyanins/chemistry , Mass Spectrometry/methods , Oryza/chemistry , Plant Extracts/chemistry , Sequestering Agents/metabolism , Anthocyanins/analysis
12.
Anal Chem ; 90(11): 6494-6501, 2018 06 05.
Article in English | MEDLINE | ID: mdl-29708737

ABSTRACT

Lipid identification and quantification are essential objectives in comprehensive lipidomics studies challenged by the high number of lipids, their chemical diversity, and their dynamic range. In this work, we developed a tailored method for profiling and quantification combining (1) isotope dilution, (2) enhanced isomer separation by C30 fused-core reversed-phase material, and (3) parallel Orbitrap and ion trap detection by the Orbitrap Fusion Lumos Tribid mass spectrometer. The combination of parallelizable ion analysis without time loss together with different fragmentation techniques (HCD/CID) and an inclusion list led to higher quality in lipid identifications exemplified in human plasma and yeast samples. Moreover, we used lipidome isotope-labeling of yeast (LILY)-a fast and efficient in vivo labeling strategy in Pichia pastoris-to produce (nonradioactive) isotopically labeled eukaryotic lipid standards in yeast. We integrated the 13C lipids in the LC-MS workflow to enable relative and absolute compound-specific quantification in yeast and human plasma samples by isotope dilution. Label-free and compound-specific quantification was validated by comparison against a recent international interlaboratory study on human plasma SRM 1950. In this way, we were able to prove that LILY enabled quantification leads to accurate results, even in complex matrices. Excellent analytical figures of merit with enhanced trueness, precision and linearity over 4-5 orders of magnitude were observed applying compound-specific quantification with 13C-labeled lipids. We strongly believe that lipidomics studies will benefit from incorporating isotope dilution and LC-MSn strategies.


Subject(s)
Chromatography, Reverse-Phase/methods , Lipids/blood , Mass Spectrometry/methods , Carbon Isotopes/analysis , Carbon Isotopes/blood , Humans , Indicator Dilution Techniques , Lipids/analysis , Workflow , Yeasts/chemistry
13.
Free Radic Res ; 50(3): 328-36, 2016.
Article in English | MEDLINE | ID: mdl-26554438

ABSTRACT

Reactive carbonyl species (RCS) and the corresponding protein adducts (advanced glycoxidation or lipoxidation end products, i.e. AGEs and ALEs) are now widely studied from different points of view, since they can be considered as biomarkers, pathogenic factors, toxic mediators and drug targets. One of the main limits of the research in this field is the lack of standardized and fully characterized AGEs and ALEs to be used for biological, toxicological, and analytical studies. In this work, we set up a procedure to prepare and fully characterize a set of AGEs and ALEs by incubating ubiquitin - a model protein selected as target for carbonylation - with four different RCS: 4-hydroxy-trans-2-nonenal (HNE), methylglyoxal (MGO), glyoxal (GO), and malondialdehyde (MDA). After 24 h of incubation, the extent of protein carbonylation was estimated using a recently developed quantitative strategy based on high-resolution mass spectrometry. The resulting AGEs and ALEs were fully characterized by both intact protein and bottom-up analyses in terms of: stoichiometry of the total amount of modified protein, elucidation of the structure of the RCS-deriving adducts, and localization of the RCS-modified amino acids. Each RCS exhibited different reactivity toward ubiquitin, as detected by quantifying the extent of protein modification. The order of reactivity was MGO > GO > HNE > MDA. A variety of reaction products was identified and mapped on lysine, arginine, and histidine residues of the protein. In summary, a highly standardized and reproducible method to prepare fully characterized AGEs/ALEs is here presented.


Subject(s)
Aldehydes/chemistry , Glyoxal/chemistry , Malondialdehyde/chemistry , Mass Spectrometry , Pyruvaldehyde/chemistry , Ubiquitin/chemistry , Animals , Cattle , Protein Carbonylation
14.
J Pharm Biomed Anal ; 91: 108-18, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24463041

ABSTRACT

An in vitro high resolution mass spectrometry (MS) method was set-up to test the ability of compounds, mixtures and extracts to inhibit protein carbonylation induced by reactive carbonyl species (RCS). The method consists of incubating the protein target (ubiquitin) with 4-hydroxy-trans-2-nonenal (HNE) in the presence and absence of the tested compound. After 24h of incubation, the reaction is stopped and the protein is analyzed by high-resolution MS. The extent of protein carbonylation is determined by measuring the area of the +11 multicharged peak of the HNE adduct in respect to the native form. The method was validated by measuring the effect of well-known RCS sequestering agents, namely aminoguanidine, pyridoxamine, hydralazine and carnosine, yielding a good reproducibility and the possibility to be automatable. All the compounds were found to dose-dependently inhibit the protein carbonylation with the following order of potency carnosine≈hydralazine≫aminoguanidine>pyridoxamine, as determined by calculating the UC50 values, that is the concentration required to inhibit ubiquitin carbonylation by 50%. A good correlation was found with the results obtained by measuring HNE consumption using an HPLC method optimized by a mobile phase set at pH 7.4, in order to stabilize the eluted adducts. The MS approach was then applied to test the effect of two selected natural extracts on protein carbonylation, i.e. green coffee bean extract and procyanidins from Vitis vinifera. In summary, this paper reports a validated and highly reproducible MS method to test the ability of pure compounds as well as natural extracts to act as protein carbonylation inhibitors.


Subject(s)
Aldehydes/chemistry , Mass Spectrometry/methods , Sequestering Agents/chemistry , Hydrogen-Ion Concentration , Protein Carbonylation/drug effects , Ubiquitin/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...