Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Prog Neurobiol ; 229: 102502, 2023 10.
Article in English | MEDLINE | ID: mdl-37442410

ABSTRACT

Many animal species show comparable abilities to detect basic rhythms and produce rhythmic behavior. Yet, the capacities to process complex rhythms and synchronize rhythmic behavior appear to be species-specific: vocal learning animals can, but some primates might not. This discrepancy is of high interest as there is a putative link between rhythm processing and the development of sophisticated sensorimotor behavior in humans. Do our closest ancestors show comparable endogenous dispositions to sample the acoustic environment in the absence of task instructions and training? We recorded EEG from macaque monkeys and humans while they passively listened to isochronous equitone sequences. Individual- and trial-level analyses showed that macaque monkeys' and humans' delta-band neural oscillations encoded and tracked the timing of auditory events. Further, mu- (8-15 Hz) and beta-band (12-20 Hz) oscillations revealed the superimposition of varied accentuation patterns on a subset of trials. These observations suggest convergence in the encoding and dynamic attending of temporal regularities in the acoustic environment, bridging a gap in the phylogenesis of rhythm cognition.


Subject(s)
Auditory Perception , Macaca , Animals , Humans , Acoustic Stimulation , Haplorhini , Acoustics , Electroencephalography
2.
Sci Rep ; 12(1): 11726, 2022 07 11.
Article in English | MEDLINE | ID: mdl-35821035

ABSTRACT

Through long-term training, music experts acquire complex and specialized sensorimotor skills, which are paralleled by continuous neuro-anatomical and -functional adaptations. The underlying neuroplasticity mechanisms have been extensively explored in decades of research in music, cognitive, and translational neuroscience. However, the absence of a comprehensive review and quantitative meta-analysis prevents the plethora of variegated findings to ultimately converge into a unified picture of the neuroanatomy of musical expertise. Here, we performed a comprehensive neuroimaging meta-analysis of publications investigating neuro-anatomical and -functional differences between musicians (M) and non-musicians (NM). Eighty-four studies were included in the qualitative synthesis. From these, 58 publications were included in coordinate-based meta-analyses using the anatomic/activation likelihood estimation (ALE) method. This comprehensive approach delivers a coherent cortico-subcortical network encompassing sensorimotor and limbic regions bilaterally. Particularly, M exhibited higher volume/activity in auditory, sensorimotor, interoceptive, and limbic brain areas and lower volume/activity in parietal areas as opposed to NM. Notably, we reveal topographical (dis-)similarities between the identified functional and anatomical networks and characterize their link to various cognitive functions by means of meta-analytic connectivity modelling. Overall, we effectively synthesized decades of research in the field and provide a consistent and controversies-free picture of the neuroanatomy of musical expertise.


Subject(s)
Music , Brain/diagnostic imaging , Brain/physiology , Cognition/physiology , Music/psychology , Neuroimaging , Probability
3.
Trends Neurosci ; 45(9): 667-677, 2022 09.
Article in English | MEDLINE | ID: mdl-35810022

ABSTRACT

Continuous interactions between physiological body-brain rhythms influence how individuals act, perceive, and evaluate their environment. Despite increasing interest, the intricate interface between breathing, cardiac, neural rhythms, and cognitive function remains poorly understood. By evaluating current theoretical and empirical implications, we derive an integrative framework of a 'body-brain dynamic system' that combines a hidden hierarchical structure with dynamical state transitions. We propose that body-brain signals can interchangeably drive state- and task-specific coupling mechanisms which influence cognitive functions. The dynamical nature of this framework parallels the intrinsic variability of human behavior, and ultimately aims at better understanding how individuals act in and adapt to a dynamically changing environment.


Subject(s)
Brain , Cognition , Brain/physiology , Cognition/physiology , Humans , Respiration
5.
Front Psychol ; 10: 1704, 2019.
Article in English | MEDLINE | ID: mdl-31417454

ABSTRACT

Converging evidence has demonstrated that musical training is associated with improved perceptual and cognitive skills, including executive functions and general intelligence, particularly in childhood. In contrast, in adults the relationship between cognitive performance and musicianship is less clear and seems to be modulated by a number of background factors, such as personality and socio-economic status. Aiming to shed new light on this topic, we administered the Wechsler Adult Intelligence Scale III (WAIS-III), the Wechsler Memory Scale III (WMS-III), and the Stroop Test to 101 Finnish healthy adults grouped according to their musical expertise (non-musicians, amateurs, and musicians). After being matched for socio-economic status, personality traits and other demographic variables, adult musicians exhibited higher cognitive performance than non-musicians in all the mentioned measures. Moreover, linear regression models showed significant positive relationships between executive functions (working memory and attention) and the duration of musical practice, even after controlling for intelligence and background variables, such as personality traits. Hence, our study offers further support for the association between cognitive abilities and musical training, even in adulthood. HIGHLIGHTS: - Musicians show higher general intelligence (FSIQ), verbal intelligence (VIQ), working memory (WMI) and attention skills than non-musicians. Amateurs score in between.- Significant positive correlations between years of musical playing and cognitive abilities support the hypothesis that long-term musical practice is associated with intelligence and executive functions.

SELECTION OF CITATIONS
SEARCH DETAIL
...