Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Adv ; 10(30): eadm7499, 2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39058782

ABSTRACT

Mars' water history is fundamental to understanding Earth-like planet evolution. Water escapes to space as atoms, and hydrogen atoms escape faster than deuterium giving an increase in the residual D/H ratio. The present ratio reflects the total water Mars has lost. Observations with the Mars Atmosphere and Volatile Evolution (MAVEN) and Hubble Space Telescope (HST) spacecraft provide atomic densities and escape rates for H and D. Large increases near perihelion observed each martian year are consistent with a strong upwelling of water vapor. Short-term changes require processes in addition to thermal escape, likely from atmospheric dynamics and superthermal atoms. Including escape from hot atoms, both H and D escape rapidly, and the escape fluxes are limited by resupply from the lower atmosphere. In this paradigm for the escape of water, the D/H ratio of the escaping atoms and the enhancement in water are determined by upwelling water vapor and atmospheric dynamics rather than by the specific details of atomic escape.

2.
Sci Adv ; 7(7)2021 Feb.
Article in English | MEDLINE | ID: mdl-33568473

ABSTRACT

Isotopic ratios and, in particular, the water D/H ratio are powerful tracers of the evolution and transport of water on Mars. From measurements performed with ExoMars/NOMAD, we observe marked and rapid variability of the D/H along altitude on Mars and across the whole planet. The observations (from April 2018 to April 2019) sample a broad range of events on Mars, including a global dust storm, the evolution of water released from the southern polar cap during southern summer, the equinox phases, and a short but intense regional dust storm. In three instances, we observe water at very high altitudes (>80 km), the prime region where water is photodissociated and starts its escape to space. Rayleigh distillation appears the be the driving force affecting the D/H in many cases, yet in some instances, the exchange of water reservoirs with distinctive D/H could be responsible.

SELECTION OF CITATIONS
SEARCH DETAIL
...