Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters










Publication year range
1.
ACS Appl Mater Interfaces ; 16(11): 13903-13913, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38459939

ABSTRACT

Multijunction solar cells have the prospect of a greater theoretical efficiency limit than single-junction solar cells by minimizing the transmissive and thermalization losses a single absorber material has. In solar cell applications, Sb2S3 is considered an attractive absorber due to its elemental abundance, stability, and high absorption coefficient in the visible range of the solar spectrum, yet with a band gap of 1.7 eV, it is transmissive for near-IR and IR photons. Using it as the top cell (the cell where light is first incident) in a two-terminal tandem architecture in combination with a bottom cell (the cell where light arrives second) of PbS quantum dots (QDs), which have an adjustable band gap suitable for absorbing longer wavelengths, is a promising approach to harvest the solar spectrum more effectively. In this work, these two subcells are monolithically fabricated and connected in series by a poly(3,4-ethylene-dioxythiophene) polystyrene sulfonate (PEDOT:PSS)-ZnO tunnel junction as the recombination layer. We explore the surface morphology of ZnO QD films with different spin-coating conditions, which serve as the PbS QD cell's electron transport material. Furthermore, we examine the differences in photogenerated current upon varying the PbS QD absorber layer thickness and the electrical and optical characteristics of the tandem with respect to the stand-alone reference cells. This tandem architecture demonstrates an extended spectral response into the IR with an open-circuit potential exceeding 1.1 V and a power conversion efficiency of 5.6%, which is greater than that of each single-junction cell.

2.
Small ; 19(31): e2207238, 2023 Aug.
Article in English | MEDLINE | ID: mdl-36748284

ABSTRACT

Carbon nanodots (CNDs) synthesized from citric acid and formyl derivatives, that is, formamide, urea, or N-methylformamide, stand out through their broad-range visible-light absorbance and extraordinary photostability. Despite their potential, their use has thus far been limited to imaging research. This work has now investigated the link between CNDs' photochemical properties and their chemical structure. Electron-rich, yellow carbon nanodots (yCNDs) are obtained with in situ addition of NaOH during the synthesis, whereas otherwise electron-poor, red carbon nanodots (rCNDs) are obtained. These properties originate from the reduced and oxidized dimer of citrazinic acid within the matrix of yCNDs and rCNDs, respectively. Remarkably, yCNDs deposited on TiO2 give a 30% higher photocurrent density of 0.7 mA cm-2 at +0.3 V versus Ag/AgCl under Xe-lamp irradiation (450 nm long-pass filter, 100 mW cm-2 ) than rCNDs. The difference in overall photoelectric performance is due to fundamentally different charge-transfer mechanisms. These depend on either the electron-accepting or the electron-donating nature of the CNDs, as is evident from photoelectrochemical tests with TiO2 and NiO and time-resolved spectroscopic measurements.

3.
J Phys Chem Lett ; 12(1): 680-685, 2021 Jan 14.
Article in English | MEDLINE | ID: mdl-33395303

ABSTRACT

Colloidal PbS nanoplatelets (NPLs) are highly interesting materials for near-infrared optoelectronic applications. We use ultrafast transient optical absorption spectroscopy to study the characteristics and dynamics of photoexcited excitons in ultrathin PbS NPLs with a cubic crystal structure. NPLs are synthesized at near room temperature from lead oleate and thiourea precursors; they show an optical absorption onset at 680 nm (1.8 eV) and photoluminescence at 720 nm (1.7 eV). By postsynthetically treating PbS NPLs with CdCl2, their photoluminescence quantum yield is strongly enhanced from 1.4% to 19.4%. The surface treatment leads to an increased lead to sulfur ratio in the structures and associated reduced nonradiative recombination. Additionally, exciton-phonon interactions in pristine and CdCl2 treated NPLs at frequencies of 1.96 and 2.04 THz are apparent from coherent oscillations in the transient absorption spectra. This study is an important step forward in unraveling and controlling the optical properties of IV-VI semiconductor NPLs.

4.
J Phys Chem C Nanomater Interfaces ; 123(49): 29599-29608, 2019 Dec 12.
Article in English | MEDLINE | ID: mdl-31867087

ABSTRACT

Colloidal quantum dots (QDs) allow great flexibility in the design of optoelectronic devices, thanks to their size-dependent optical and electronic properties and the possibility to fabricate thin films with solution-based processing. In particular, in QD-based heterojunctions, the band gap of both components can be controlled by varying the size of the QDs. However, control over the band alignment between the two materials is required to tune the dynamics of carrier transfer across a heterostructure. We demonstrate that ligand exchange strategies can be used to control the band alignment of PbSe and CdSe QDs in a mixed QD solid, shifting it from a type-I to a type-II alignment. The change in alignment is observed in both spectroelectrochemical and transient absorption measurements, leading to a change in the energy of the conduction band edges in the two materials and in the direction of electron transfer upon photoexcitation. Our work demonstrates the possibility to tune the band offset of QD heterostructures via control of the chemical species passivating the QD surface, allowing full control over the energetics of the heterostructure without requiring changes in the QD composition.

5.
J Phys Chem C Nanomater Interfaces ; 123(22): 13451-13457, 2019 Jun 06.
Article in English | MEDLINE | ID: mdl-31205576

ABSTRACT

The assembly of colloidal quantum dots (QDs) into dense superstructures holds great promise for the development of novel optoelectronic devices. Several assembly techniques have been explored; however, achieving direct and precise control over the interparticle potential that controls the assembly has proven to be challenging. Here, we exploit the application of critical Casimir forces to drive the growth of QDs into superstructures. We show that the exquisite temperature-dependence of the critical Casimir potential offers new opportunities to control the assembly process and morphology of the resulting QD superstructures. The direct assembly control allows us to elucidate the relation between structural, optical, and conductive properties of the critical Casimir-grown QD superstructures. We find that the choice of the temperature setting the interparticle potential plays a central role in maximizing charge percolation across QD thin-films. These results open up new directions for controlling the assembly of nanostructures and their optoelectronic properties.

6.
ACS Appl Energy Mater ; 1(11): 6569-6576, 2018 Nov 26.
Article in English | MEDLINE | ID: mdl-30506040

ABSTRACT

InP and InZnP colloidal quantum dots (QDs) are promising materials for application in light-emitting devices, transistors, photovoltaics, and photocatalytic cells. In addition to possessing an appropriate bandgap, high absorption coefficient, and high bulk carrier mobilities, the intrinsic toxicity of InP and InZnP is much lower than for competing QDs that contain Cd or Pb-providing a potentially safer commercial product. However, compared to other colloidal QDs, InP QDs remain sparsely used in devices and their electronic transport properties are largely unexplored. Here, we use time-resolved microwave conductivity measurements to study charge transport in films of InP and InZnP colloidal quantum dots capped with a variety of short ligands. We find that transport in InP QDs is dominated by trapping effects, which are mitigated in InZnP QDs. We improve charge carrier mobilities with a range of ligand-exchange treatments and for the best treatments reach mobilities and lifetimes on par with those of PbS QD films used in efficient solar cells. To demonstrate the device-grade quality of these films, we construct solar cells based on InP & InZnP QDs with power conversion efficiencies of 0.65 and 1.2%, respectively. This represents a large step forward in developing Cd- and Pb-free next-generation optoelectronic devices.

7.
J Am Chem Soc ; 140(46): 15712-15723, 2018 11 21.
Article in English | MEDLINE | ID: mdl-30375226

ABSTRACT

Energy levels in the band gap arising from surface states can dominate the optical and electronic properties of semiconductor nanocrystal quantum dots (QDs). Recent theoretical work has predicted that such trap states in II-VI and III-V QDs arise only from two-coordinated anions on the QD surface, offering the hypothesis that Lewis acid (Z-type) ligands should be able to completely passivate these anionic trap states. In this work, we provide experimental support for this hypothesis by demonstrating that Z-type ligation is the primary cause of PL QY increase when passivating undercoordinated CdTe QDs with various metal salts. Optimized treatments with InCl3 or CdCl2 afford a near-unity (>90%) photoluminescence quantum yield (PL QY), whereas other metal halogen or carboxylate salts provide a smaller increase in PL QY as a result of weaker binding or steric repulsion. The addition of non-Lewis acidic ligands (amines, alkylammonium chlorides) systematically gives a much smaller but non-negligible increase in the PL QY. We discuss possible reasons for this result, which points toward a more complex and dynamic QD surface. Finally we show that Z-type metal halide ligand treatments also lead to a strong increase in the PL QY of CdSe, CdS, and InP QDs and can increase the efficiency of sintered CdTe solar cells. These results show that surface anions are the dominant source of trap states in II-VI and III-V QDs and that passivation with Lewis acidic Z-type ligands is a general strategy to fix those traps. Our work also provides a method to tune the PL QY of QD samples from nearly zero up to near-unity values, without the need to grow epitaxial shells.

8.
ACS Nano ; 12(10): 10084-10094, 2018 Oct 23.
Article in English | MEDLINE | ID: mdl-30216045

ABSTRACT

Generating multiple excitons by a single high-energy photon is a promising third-generation solar energy conversion strategy. We demonstrate that multiple exciton generation (MEG) in PbS|CdS Janus-like heteronanostructures is enhanced over that of single-component and core/shell nanocrystal architectures, with an onset close to two times the PbS band gap. We attribute the enhanced MEG to the asymmetric nature of the heteronanostructure that results in an increase in the effective Coulomb interaction that drives MEG and a reduction of the competing hot exciton cooling rate. Slowed cooling occurs through effective trapping of hot-holes by a manifold of valence band interfacial states having both PbS and CdS character, as evidenced by photoluminescence studies and ab initio calculations. Using transient photocurrent spectroscopy, we find that the MEG characteristics of the individual nanostructures are maintained in conductive arrays and demonstrate that these quasi-spherical PbS|CdS nanocrystals can be incorporated as the main absorber layer in functional solid-state solar cell architectures. Finally, based upon our analysis, we provide design rules for the next generation of engineered nanocrystals to further improve the MEG characteristics.

9.
Nat Commun ; 9(1): 2310, 2018 06 13.
Article in English | MEDLINE | ID: mdl-29899361

ABSTRACT

Thermalization losses limit the photon-to-power conversion of solar cells at the high-energy side of the solar spectrum, as electrons quickly lose their energy relaxing to the band edge. Hot-electron transfer could reduce these losses. Here, we demonstrate fast and efficient hot-electron transfer between lead selenide and cadmium selenide quantum dots assembled in a quantum-dot heterojunction solid. In this system, the energy structure of the absorber material and of the electron extracting material can be easily tuned via a variation of quantum-dot size, allowing us to tailor the energetics of the transfer process for device applications. The efficiency of the transfer process increases with excitation energy as a result of the more favorable competition between hot-electron transfer and electron cooling. The experimental picture is supported by time-domain density functional theory calculations, showing that electron density is transferred from lead selenide to cadmium selenide quantum dots on the sub-picosecond timescale.

10.
Nanoscale ; 10(23): 11110-11116, 2018 Jun 14.
Article in English | MEDLINE | ID: mdl-29872813

ABSTRACT

Indium antimonide (InSb) quantum dots (QDs) have unique and interesting photophysical properties, but widespread experimentation with InSb QDs is lacking due to the difficulty in synthesizing this material. The key experimental challenge in fabricating InSb QDs is preparing a suitable Sb-precursor in the correct oxidation state that reacts with the In-precursor in a controllable manner. Here, we review and discuss the synthetic strategies for making colloidal InSb QDs and present a new reaction scheme yielding small (∼1 nm diameter) InSb QDs. This was accomplished by employing Sb(NMe2)3 as the antimony precursor and by screening different reducing agents that can selectively reduce it to stibine in situ. The released SbH3, subsequently, reacts with In carboxylate to form small InSb clusters. The absorption features are moderately tunable (from 400 nm to 660 nm) by the amount and rate of reductant addition as well as the temperature of injection and subsequent annealing. Optical properties were probed with transient absorption spectroscopy and show complex time and spectral dependencies.

11.
ACS Nano ; 12(5): 4796-4802, 2018 05 22.
Article in English | MEDLINE | ID: mdl-29664600

ABSTRACT

Carrier multiplication is a process in which one absorbed photon excites two or more electrons. This is of great promise to increase the efficiency of photovoltaic devices. Until now, the factors that determine the onset energy of carrier multiplication have not been convincingly explained. We show experimentally that the onset of carrier multiplication in lead chalcogenide quantum confined and bulk crystals is due to asymmetric optical transitions. In such transitions most of the photon energy in excess of the band gap is given to either the hole or the electron. The results are confirmed and explained by theoretical tight-binding calculations of the competition between impact ionization and carrier cooling. These results are a large step forward in understanding carrier multiplication and allow for a screening of materials with an onset of carrier multiplication close to twice the band gap energy. Such materials are of great interest for development of highly efficient photovoltaic devices.

12.
Angew Chem Int Ed Engl ; 56(44): 13795-13799, 2017 10 23.
Article in English | MEDLINE | ID: mdl-28868762

ABSTRACT

Solar devices based on semiconductor nanoparticles require the use of conductive ligands; however, replacing the native, insulating ligands with conductive metal chalcogenide complexes introduces structural defects within the crystalline nanostructure that act as traps for charge carriers. We utilized atomically thin semiconductor nanoplatelets as a convenient platform for studying, both microscopically and spectroscopically, the development of defects during ligand exchange with the conductive ligands Na4 SnS4 and (NH4 )4 Sn2 S6 . These defects can be repaired via mild chemical or thermal routes, through the addition of L-type ligands or wet annealing, respectively. This results in a higher-quality, conductive, colloidally stable nanomaterial that may be used as the active film in optoelectronic devices.

13.
Nano Lett ; 17(2): 1020-1027, 2017 02 08.
Article in English | MEDLINE | ID: mdl-28068765

ABSTRACT

We developed a monolithic CdTe-PbS tandem solar cell architecture in which both the CdTe and PbS absorber layers are solution-processed from nanocrystal inks. Due to their tunable nature, PbS quantum dots (QDs), with a controllable band gap between 0.4 and ∼1.6 eV, are a promising candidate for a bottom absorber layer in tandem photovoltaics. In the detailed balance limit, the ideal configuration of a CdTe (Eg = 1.5 eV)-PbS tandem structure assumes infinite thickness of the absorber layers and requires the PbS band gap to be 0.75 eV to theoretically achieve a power conversion efficiency (PCE) of 45%. However, modeling shows that by allowing the thickness of the CdTe layer to vary, a tandem with efficiency over 40% is achievable using bottom cell band gaps ranging from 0.68 and 1.16 eV. In a first step toward developing this technology, we explore CdTe-PbS tandem devices by developing a ZnTe-ZnO tunnel junction, which appropriately combines the two subcells in series. We examine the basic characteristics of the solar cells as a function of layer thickness and bottom-cell band gap and demonstrate open-circuit voltages in excess of 1.1 V with matched short circuit current density of 10 mA/cm2 in prototype devices.

14.
J Phys Chem Lett ; 6(23): 4815-21, 2015 Dec 03.
Article in English | MEDLINE | ID: mdl-26571095

ABSTRACT

We report on photoconductivity of films of CdTe nanocrystals (NCs) using time-resolved microwave photoconductivity (TRMC). Spherical and tetrapodal CdTe NCs with tunable size-dependent properties are studied as a function of surface ligand (including inorganic molecular chalcogenide species) and annealing temperature. Relatively high carrier mobility is measured for films of sintered tetrapod NCs (4 cm(2)/(V s)). Our TRMC findings show that Te(2-) capped CdTe NCs show a marked improvement in carrier mobility (11 cm(2)/(V s)), indicating that NC surface termination can be altered to play a crucial role in charge-carrier mobility even after the NC solids are sintered into bulk films.

15.
J Phys Chem Lett ; 6(10): 1830-3, 2015 May 21.
Article in English | MEDLINE | ID: mdl-26263256

ABSTRACT

Decreasing the variability in quantum dot (QD) syntheses is desirable for better uniformity of samples for use in QD-based studies and applications. Here we report a highly reproducible linear relationship between the concentration of ligand (in this case oleic acid, OA) and the lowest energy exciton peak position (nm) of the resulting PbS QDs for various hot-injection temperatures. Thus, for a given injection temperature, the size of the PbS QD product is purely controlled by the amount of OA. We used this relationship to study PbS QD solar cells that are fabricated from the same size of PbS QDs but synthesized using four different injection temperatures: 95, 120, 150, and 185 °C. We find that the power conversion efficiency does not depend on injection temperature but that the V(oc) is higher for QDs synthesized at lower temperatures while the J(sc) is improved in higher temperature QDs.

16.
ACS Nano ; 9(7): 7151-63, 2015 Jul 28.
Article in English | MEDLINE | ID: mdl-26161785

ABSTRACT

We developed a strategy for producing quasi-spherical nanocrystals of anisotropic heterostructures of Cd/Pb chalcogenides. The nanostructures are fabricated via a controlled cation exchange reaction where the Cd(2+) cation is exchanged for the Pb(2+) cation. The cation exchange reaction is thermally activated and can be controlled by adjusting the reaction temperature or time. We characterized the particles using TEM, XPS, PL, and absorption spectroscopy. With complete exchange, high quality Pb-chalcogenide quantum dots are produced. In addition to Cd(2+), we also find suitable conditions for the exchange of Zn(2+) cations for Pb(2+) cations. The cation exchange is anisotropic starting at one edge of the nanocrystals and proceeds along the ⟨111⟩ direction producing a sharp interface at a (111) crystallographic plane. Instead of spherical core/shell structures, we produced and studied quasi-spherical CdS/PbS and CdSe/PbSe Janus-type heterostructures. Nontrivial PL behavior was observed from the CdS(e)/PbS(e) heterostructures as the Pb:Cd ratio is increased.

17.
Sci Rep ; 5: 9945, 2015 Apr 24.
Article in English | MEDLINE | ID: mdl-25910183

ABSTRACT

We developed a layer-by-layer method of preparing PbE (E = S or Se) quantum dot (QD) solar cells using metal halide (PbI2, PbCl2, CdI2, or CdCl2) salts dissolved in dimethylformamide to displace oleate surface ligands and form conductive QD solids. The resulting QD solids have a significant reduction in the carbon content compared to films treated with thiols and organic halides. We find that the PbI2 treatment is the most successful in removing alkyl surface ligands and also replaces most surface bound Cl(-) with I(-). The treatment protocol results in PbS QD films exhibiting a deeper work function and band positions than other ligand exchanges reported previously. The method developed here produces solar cells that perform well even at film thicknesses approaching a micron, indicating improved carrier transport in the QD films. We demonstrate QD solar cells based on PbI2 with power conversion efficiencies above 7%.

18.
ACS Nano ; 8(9): 9063-72, 2014 Sep 23.
Article in English | MEDLINE | ID: mdl-25133302

ABSTRACT

We study the use of cadmium telluride (CdTe) nanocrystal colloids as a solution-processable "ink" for large-grain CdTe absorber layers in solar cells. The resulting grain structure and solar cell performance depend on the initial nanocrystal size, shape, and crystal structure. We find that inks of predominantly wurtzite tetrapod-shaped nanocrystals with arms ∼5.6 nm in diameter exhibit better device performance compared to inks composed of smaller tetrapods, irregular faceted nanocrystals, or spherical zincblende nanocrystals despite the fact that the final sintered film has a zincblende crystal structure. Five different working device architectures were investigated. The indium tin oxide (ITO)/CdTe/zinc oxide structure leads to our best performing device architecture (with efficiency >11%) compared to others including two structures with a cadmium sulfide (CdS) n-type layer typically used in high efficiency sublimation-grown CdTe solar cells. Moreover, devices without CdS have improved response at short wavelengths.

19.
Nano Lett ; 14(2): 670-5, 2014 Feb 12.
Article in English | MEDLINE | ID: mdl-24364381

ABSTRACT

Solution processing of photovoltaic semiconducting layers offers the potential for drastic cost reduction through improved materials utilization and high device throughput. One compelling solution-based processing strategy utilizes semiconductor layers produced by sintering nanocrystals into large-grain semiconductors at relatively low temperatures. Using n-ZnO/p-CdTe as a model system, we fabricate sintered CdTe nanocrystal solar cells processed at 350 °C with power conversion efficiencies (PCE) as high as 12.3%. JSC of over 25 mA cm(-2) are achieved, which are comparable or higher than those achieved using traditional, close-space sublimated CdTe. We find that the VOC can be substantially increased by applying forward bias for short periods of time. Capacitance measurements as well as intensity- and temperature-dependent analysis indicate that the increased VOC is likely due to relaxation of an energetic barrier at the ITO/CdTe interface.

20.
Nano Lett ; 13(10): 4862-9, 2013 Oct 09.
Article in English | MEDLINE | ID: mdl-24041088

ABSTRACT

Quantum dots (QDs) coupled into disordered arrays have exhibited the intriguing property of bulk-like transport while maintaining discrete excitonic optical transitions. We have utilized ultrafast cross-polarized transient grating (CPTG) spectroscopy to measure electron-hole wave function overlap in CdSe QD films with chemically modified surfaces for tuning inter-QD electronic coupling. By comparing the CPTG decays with those of isolated QDs, we find that excitons coherently delocalize to form excited states more than 200% larger than the QD diameter.


Subject(s)
Cadmium Compounds/chemistry , Optics and Photonics , Quantum Dots/chemistry , Selenium Compounds/chemistry , Electron Transport , Electrons , Spectrum Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...