Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
mSystems ; 3(1)2018.
Article in English | MEDLINE | ID: mdl-29404426

ABSTRACT

In this study, a young Cheddar curd was used to produce two types of surface-ripened cheese, using two commercial smear-culture mixes of yeasts and bacteria. Whole-metagenome shotgun sequencing was used to screen the microbial population within the smear-culture mixes and on the cheese surface, with comparisons of microorganisms at both the species and the strain level. The use of two smear mixes resulted in the development of distinct microbiotas on the surfaces of the two test cheeses. In one case, most of the species inoculated on the cheese established themselves successfully on the surface during ripening, while in the other, some of the species inoculated were not detected during ripening and the most dominant bacterial species, Glutamicibacter arilaitensis, was not a constituent of the culture mix. Generally, yeast species, such as Debaryomyces hansenii and Geotrichum candidum, were dominant during the first stage of ripening but were overtaken by bacterial species, such as Brevibacterium linens and G. arilaitensis, in the later stages. Using correlation analysis, it was possible to associate individual microorganisms with volatile compounds detected by gas chromatography-mass spectrometry in the cheese surface. Specifically, D. hansenii correlated with the production of alcohols and carboxylic acids, G. arilaitensis with alcohols, carboxylic acids and ketones, and B. linens and G. candidum with sulfur compounds. In addition, metagenomic sequencing was used to analyze the metabolic potential of the microbial populations on the surfaces of the test cheeses, revealing a high relative abundance of metagenomic clusters associated with the modification of color, variation of pH, and flavor development. IMPORTANCE Fermented foods, in particular, surface-ripened cheese, represent a model to explain the metabolic interactions which regulate microbial succession in complex environments. This study explains the role of individual species in a heterogeneous microbial environment, i.e., the exterior of surface-ripened cheese. Through whole-metagenome shotgun sequencing, it was possible to investigate the metabolic potential of the resident microorganisms and show how variations in the microbial populations influence important aspects of cheese ripening, especially flavor development. Overall, in addition to providing fundamental insights, this research has considerable industrial relevance relating to the production of fermented food with specific qualities.

2.
Transl Psychiatry ; 3: e309, 2013 Oct 01.
Article in English | MEDLINE | ID: mdl-24084940

ABSTRACT

The atypical antipsychotic olanzapine is often associated with serious metabolic side effects including weight gain and increased visceral fat. These adverse events are a considerable clinical problem and the mechanisms underlying them are multifactorial and poorly understood. Growing evidence suggests that the gut microbiota has a key role in energy regulation and disease states such as obesity. Moreover, we recently showed that chronic olanzapine altered the composition of the gut microbiome in the rat. It is thus possible that treatments that alter gut microbiota composition could ameliorate olanzapine-induced weight gain and associated metabolic syndrome. To this end, we investigated the impact of antibiotic-induced alteration of the gut microbiota on the metabolic effects associated with chronic olanzapine treatment in female rats. Animals received vehicle or olanzapine (2 mg kg(-1) per day) for 21 days, intraperitoneal injection, two times daily. Animals were also coadministered vehicle or an antibiotic cocktail consisting of neomycin (250 mg kg(-1) per day), metronidazole (50 mg kg(-1) per day) and polymyxin B (9 mg kg(-1) per day) by oral gavage, daily, beginning 5 days before olanzapine treatment. The antibiotic cocktail drastically altered the microbiota of olanzapine-treated rats, and olanzapine alone was also associated with an altered microbiota. Coadministration of the antibiotic cocktail in olanzapine-treated rats attenuated: body weight gain, uterine fat deposition, macrophage infiltration of adipose tissue, plasma free fatty acid levels, all of which were increased by olanzapine alone. These results suggest that the gut microbiome has a role in the cycle of metabolic dysfunction associated with olanzapine, and could represent a novel therapeutic target for preventing antipsychotic-induced metabolic disease.


Subject(s)
Anti-Bacterial Agents/pharmacology , Antipsychotic Agents/pharmacology , Benzodiazepines/pharmacology , Intestines/microbiology , Intra-Abdominal Fat/drug effects , Microbiota/drug effects , Weight Gain/drug effects , Animals , Fatty Acids, Nonesterified/blood , Female , Intestines/drug effects , Intra-Abdominal Fat/immunology , Macrophages/drug effects , Macrophages/immunology , Metronidazole/pharmacology , Neomycin/pharmacology , Olanzapine , Polymyxin B/pharmacology , Rats , Rats, Sprague-Dawley
3.
Mol Genet Genomics ; 268(4): 500-9, 2002 Dec.
Article in English | MEDLINE | ID: mdl-12471447

ABSTRACT

In order to isolate genes encoding so-called Two-Component Regulatory Systems from the lactic acid bacterium Streptococcus thermophilus, a cloning strategy was employed based on suppression of the alkaline phosphatase-negative phenotype displayed by the Escherichia coli strain ANCC22. Several suppressing clones were obtained which were shown to produce alkaline phosphatase activity. Sequence analysis of four of these clones revealed the presence of overlapping DNA inserts representing two ORFs, designated pfkT and pykT, whose deduced protein products exhibit significant similarity to phosphofructokinases and pyruvate kinases, respectively, from a variety of bacteria. A plasmid bearing pfkT was shown to complement a phosphofructokinase-negative mutant of E. coli, showing that this gene indeed specifies phosphofructokinase activity. It was shown that suppression of the alkaline phosphatase-negative phenotype of E. coli ANCC22 due to the presence of pfkT is caused by modulation of the intracellular level of acetyl phosphate.


Subject(s)
Carbon/metabolism , Gene Expression Regulation, Bacterial , Genes, Bacterial , Phosphofructokinases/genetics , Streptococcus/enzymology , Alkaline Phosphatase/deficiency , Alkaline Phosphatase/metabolism , Base Sequence , Chromosomes/genetics , DNA Primers/chemistry , DNA, Bacterial/metabolism , Escherichia coli/enzymology , Genes, Bacterial/physiology , Histidine Kinase , Molecular Sequence Data , Open Reading Frames , Organophosphates/metabolism , Phenotype , Phosphorylation , Plasmids , Polymerase Chain Reaction , Protein Kinases/deficiency , Protein Kinases/isolation & purification , Protein Kinases/metabolism , RNA, Bacterial/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...