Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Cell Biol ; 21(2): 414-24, 2001 Jan.
Article in English | MEDLINE | ID: mdl-11134330

ABSTRACT

Following hepatic injury or stress, gluconeogenic and acute-phase response genes are rapidly upregulated to restore metabolic homeostasis and limit tissue damage. Regulation of the liver-restricted insulin-like growth factor binding protein 1 (IGFBP-1) gene is dramatically altered by changes in the metabolic state and hepatectomy, and thus it provided an appropriate reporter to assess the transcriptional milieu in the liver during repair and regeneration. The cytokine interleukin-6 (IL-6) is required for liver regeneration and repair, and it transcriptionally upregulates a vast array of genes during liver growth by unknown mechanisms. Evidence for a biologic role of IL-6 in IGFBP-1 upregulation was demonstrated by increased expression of hepatic IGFBP-1 in IL-6 transgenic and following injection of IL-6 into nonfasting animals and its reduced expression in IL-6(-/-) livers posthepatectomy. In both hepatic and nonhepatic cells, IL-6 -mediated IGFBP-1 promoter activation was via an intact hepatocyte nuclear factor 1 (HNF-1) site and was dependent on the presence of endogenous liver factor HNF-1 and induced factors STAT3 and AP-1 (c-Fos/c-Jun). IL-6 acted through the STAT3 pathway, as dominant negative STAT3 completely blocked IL-6-mediated stimulation of the IGFBP-1 promoter via the HNF-1 site. HNF-1/c-Fos and HNF-1/STAT3 protein complexes were detected in mouse livers and in hepatic and nonhepatic cell lines overexpressing STAT3/c-Fos/HNF-1. Similar regulation was demonstrated using glucose-6-phosphatase and alpha-fibrinogen promoters, indicating that HNF-1/IL-6/STAT3/AP-1-mediated transactivation of hepatic gene expression is a general phenomenon after liver injury. These results demonstrate that the two classes of transcription factors, growth induced (STAT3 and AP-1) and tissue specific (HNF-1), can interact as an adaptive response to liver injury to amplify expression of hepatic genes important for the homeostatic response during organ repair.


Subject(s)
DNA-Binding Proteins/metabolism , Interleukin-6/metabolism , Liver/injuries , Nuclear Proteins , Trans-Activators/metabolism , Transcription Factor AP-1/metabolism , Transcription Factors/metabolism , Transcriptional Activation , Animals , DNA/genetics , DNA/metabolism , Fibrinogen/genetics , Fibrinogen/metabolism , Glucose-6-Phosphatase/genetics , Glucose-6-Phosphatase/metabolism , Hepatectomy , Hepatocyte Nuclear Factor 1 , Hepatocyte Nuclear Factor 1-alpha , Hepatocyte Nuclear Factor 1-beta , Humans , Insulin-Like Growth Factor Binding Protein 1/genetics , Insulin-Like Growth Factor Binding Protein 1/metabolism , Interleukin-6/genetics , Interleukin-6/pharmacology , Liver/drug effects , Liver/metabolism , Male , Mice , Mice, Knockout , Precipitin Tests , Promoter Regions, Genetic/genetics , Protein Binding , Proto-Oncogene Proteins c-fos/genetics , Proto-Oncogene Proteins c-fos/metabolism , Proto-Oncogene Proteins c-jun/genetics , Proto-Oncogene Proteins c-jun/metabolism , RNA, Messenger/analysis , RNA, Messenger/genetics , Response Elements/genetics , STAT3 Transcription Factor , Transcription Factors/genetics , Transcriptional Activation/drug effects , Tumor Cells, Cultured
2.
Hepatology ; 30(5): 1187-97, 1999 Nov.
Article in English | MEDLINE | ID: mdl-10534340

ABSTRACT

The insulin-like growth factor binding protein-1 (IGFBP-1) gene is highly expressed in fetal, perinatal, and regenerating liver. Up-regulation is transcriptionally mediated in regenerating liver and occurs in the first few minutes to hours after partial hepatectomy. In transgenic mice a 970-bp region from -776 to +151 of the IGFBP-1 promoter was sufficient for tissue-specific and induced expression of the gene in fetal and hepatectomized livers. However weak and/or poorly regulated expression in some transgenic lines suggested the existence of other regulatory regions. Here, genomic clones containing large regions 5' of the mouse IGFBP-1 gene sequence were isolated, subcloned, and sequenced. Deoxyribonuclease I (DNaseI) hypersensitivity analyses identified clusters of tissue-specific nuclease-sensitive sites in the promoter region, -100 to -300, -2,300, -3,100, and -5,000 along with other weak sites. After partial hepatectomy, enhanced sensitivity and/or novel sites were detected in the -100/-300, -5,000, and -3,100 regions, the promoter region remaining the most hypersensitive. A subset of these sites was present in fetal and perinatal livers. Novel tissue-specific sites that interacted with C/EBP and hepatic nuclear factor 3 (HNF3) transcription factors were identified in the -3,100 region. A hepatectomy-induced DNA binding complex containing the transcription factor USF1 was identified within the -100 to -300 region of the promoter. These results suggested that a complex array of tissue-specific and hepatic proliferation-induced transcription factors combine to regulate both the proximal promoter and more distal regulatory elements of the IGFBP-1 gene.


Subject(s)
Gene Expression Regulation, Developmental , Insulin-Like Growth Factor Binding Protein 1/genetics , Liver Regeneration , Liver/cytology , Liver/metabolism , Promoter Regions, Genetic , Animals , Base Sequence , Carcinoma, Hepatocellular , Cloning, Molecular , Deoxyribonuclease I , Fetus , Hepatectomy , Humans , Kidney/metabolism , Liver Neoplasms , Mice , Mice, Transgenic , Molecular Sequence Data , Recombinant Proteins/biosynthesis , Regulatory Sequences, Nucleic Acid , Restriction Mapping , Sequence Alignment , Sequence Homology, Nucleic Acid , Spleen/metabolism , Substrate Specificity , Transfection , Tumor Cells, Cultured
3.
Mutat Res ; 301(4): 235-41, 1993 Apr.
Article in English | MEDLINE | ID: mdl-7680757

ABSTRACT

Both spontaneous frameshift mutation and deletion mutation were measured in a T7 phage deficient in the 3'-->5' exonuclease of T7 DNA polymerase. It was found that the absence of this exonuclease caused a marked increase in the reversion of both plus one and minus one mutations. The exonuclease deficiency caused essentially no effect on the frequency of deletion between 10-bp direct repeats even when the segment between the direct repeats contained a 25-bp palindrome.


Subject(s)
Bacteriophage T7/enzymology , Bacteriophage T7/genetics , DNA Polymerase I/genetics , Exonucleases/deficiency , Frameshift Mutation , DNA Mutational Analysis , DNA, Viral/analysis , DNA, Viral/drug effects , Sequence Deletion
SELECTION OF CITATIONS
SEARCH DETAIL
...