Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Environ Manage ; 341: 117903, 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37146489

ABSTRACT

Escalated wildfire activity within the western U.S. has widespread societal impacts and long-term consequences for the imperiled sagebrush (Artemisia spp.) biome. Shifts from historical fire regimes and the interplay between frequent disturbance and invasive annual grasses may initiate permanent state transitions as wildfire frequency outpaces sagebrush communities' innate capacity to recover. Therefore, wildfire management is at the core of conservation plans for sagebrush ecosystems, especially critical habitat for species of conservation concern such as the greater sage-grouse (Centrocercus urophasianus; hereafter sage-grouse). Fuel breaks help facilitate wildfire suppression by modifying behavior through fuels modification and allowing safe access points for containment by firefighters. The Bureau of Land Management has proposed to roughly double the existing fuel break network in the western U.S., centered on the Great Basin. To our knowledge, no broad-scale examination of fuel break effectiveness or the environmental conditions under which fuel breaks are expected to be most effective has been conducted. We performed a retrospective assessment of probability of fuel break contributing to wildfire containment on recorded wildfire and fuel break interactions from 1985 to 2018 within the western U.S. We characterized environmental, fuels, and weather conditions within 500 m of wildfire contact, and within 5 km of the approaching wildfire. We used a binomial mixed model within a Bayesian framework to identify relationships between these variables and fuel break success. Fuel breaks were least successful in areas classified as having low resilience to disturbance and low resistance to invasion, in areas composed of primarily woody fuels, and when operating in high temperature and low precipitation conditions. Fuel breaks were most effective in areas where fine fuels dominated and in areas that were readily accessible. Maintenance history and fuel break type also contributed to the probability of containment. Overall results indicate a complex and sometimes paradoxical relationship between landscape characteristics that promote wildfire spread and those that impact fuel break effectiveness. Finally, we developed predictive maps of fuel break effectiveness by fuel break type to further elucidate these complex relationships and to inform urgently needed fuel break placement and maintenance priorities across the sagebrush biome.


Subject(s)
Artemisia , Wildfires , Ecosystem , Bayes Theorem , Retrospective Studies
2.
J Environ Manage ; 327: 116718, 2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36565577

ABSTRACT

For most of the 20th century and beyond, national wildland fire policies concerning fire suppression and fuels management have primarily focused on forested lands. Using summary statistics and landscape metrics, wildfire spatial patterns and trends for non-forest and forest burned area over the past two decades were examined across the U.S, and federal agency jurisdictions. This study found that wildfires burned more area of non-forest lands than forest lands at the scale of the conterminous and western U.S. and the Department of Interior (DOI). In an agency comparison, 74% of DOI burned area occurred on non-forest lands and 78% of U.S. Forest Service burned area occurred on forested lands. Landscape metrics revealed key differences between forest and non-forest fire patterns and trends in total burned area, burned patch size, distribution, and aggregation over time across the western U.S. Opposite fire patterns emerged between non-forest and forest burns when analyzed at the scale of federal agency jurisdictions. In addition, a fire regime departure analysis comparing current large fire probability with historic fire trends identified certain vegetation types and locations experiencing more fire than historically. These patterns were especially pronounced for cold desert shrublands, such as sagebrush where increases in annual area burned, and fire frequency, size, and juxtaposition have resulted in substantial losses over a twenty-year period. The emerging non-forest fire patterns are primarily due to the rapid expansion of non-native invasive grasses that increase fuel connectivity and fire spread. These invasions promote uncharacteristic frequent fire and loss of native ecosystems at large-scales, accelerating the need to place greater focus on managing invasive species in wildland fire management. Results can be used to inform wildfire management and policy aimed at reducing uncharacteristic wildfire processes and patterns for both non-forest and forest ecosystems as well as identify differing management strategies needed to address the unique wildfire issues each federal agency faces.


Subject(s)
Artemisia , Fires , Wildfires , Ecosystem , Probability
SELECTION OF CITATIONS
SEARCH DETAIL
...