Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Micromachines (Basel) ; 11(5)2020 Apr 28.
Article in English | MEDLINE | ID: mdl-32354148

ABSTRACT

Gathering precise information on mass density, size and weight of cells or cell aggregates, is crucial for applications in many biomedical fields with a specific focus on cancer research. Although few technical solutions have been presented for single-cell analysis, literature does not cover this aspect for 3D models such as spheroids. Since the research interest on such samples is notably rising, here we describe a flow-apparatus, and the associated physical method and operative protocol for the accurate measurements of mass density, size and weight. The technique is based on the detection of the terminal velocity of a free-falling sample into a specifically conceived analysis flow-channel. Moreover, in order to demonstrate the accuracy and precision of the presented flow-device, analyses were initially carried out on standardized polystyrene beads. Finally, to display the application of the proposed system for biological samples, mass density, size and weight of live SW620 tumor spheroids were analyzed. The combined measurements of such parameters can represent a step toward a deeper understanding of 3D culture models.

2.
Front Immunol ; 11: 564887, 2020.
Article in English | MEDLINE | ID: mdl-33424829

ABSTRACT

To improve pathogenetic studies in cancer development and reliable preclinical testing of anti-cancer treatments, three-dimensional (3D) cultures, including spheroids, have been widely recognized as more physiologically relevant in vitro models of in vivo tumor behavior. Currently, the generation of uniformly sized spheroids is still challenging: different 3D cell culture methods produce heterogeneous populations in dimensions and morphology, that may strongly influence readouts reliability correlated to tumor growth rate or antitumor natural killer (NK) cell-mediated cytotoxicity. In this context, an increasing consensus claims the integration of microfluidic technologies within 3D cell culture, as the physical characterization of tumor spheroids is unavoidably demanded to standardize protocols and assays for in vitro testing. In this paper, we employed a flow-based method specifically conceived to measure weight, size and focused onto mass density values of tumor spheroids. These measurements are combined with confocal and digital imaging of such samples. We tested the spheroids of four colorectal cancer (CRC) cell lines that exhibit statistically relevant differences in their physical characteristics, even though starting from the same cell seeding density. These variations are seemingly cell line-dependent and associated with the number of growing cells and the degree of spheroid compaction as well, supported by different adenosine-triphosphate contents. We also showed that this technology can estimate the NK cell killing efficacy by measuring the weight loss and diameter shrinkage of tumor spheroids, alongside with the commonly used cell viability in vitro test. As the activity of NK cells relies on their infiltration rate, the in vitro sensitivity of CRC spheroids proved to be exposure time- and cell line-dependent with direct correlation to the cell viability reduction. All these functional aspects can be measured by the system and are documented by digital image analysis. In conclusion, this flow-based method potentially paves the way towards standardization of 3D cell cultures and its early adoption in cancer research to test antitumor immune response and set up new immunotherapy strategies.


Subject(s)
Colorectal Neoplasms/immunology , Colorectal Neoplasms/pathology , Flow Cytometry/methods , Killer Cells, Natural/immunology , Lymphocytes, Tumor-Infiltrating/immunology , Spheroids, Cellular/pathology , Cell Culture Techniques/methods , Cell Proliferation , Cell Survival , Fluorescent Antibody Technique, Indirect/methods , HT29 Cells , Humans , Microfluidics/methods
3.
N Biotechnol ; 47: 1-7, 2018 Dec 25.
Article in English | MEDLINE | ID: mdl-29425777

ABSTRACT

The translation of continuous-flow microreactor technology to the industrial environment has been limited by cost and complexity of the fabrication procedures and the requirement for specialised infrastructure. In the present study, we have developed a significantly more cost-effective and easy-to-perform fabrication method for the generation of optically transparent, continuous-flow reactors. The method combines 3D printing of master moulds with sealing of the PDMS channels' replica using a pressure-sensitive adhesive tape. Morphological characterisation of the 3D printed moulds was performed and reactors were fabricated with an approximately square-shaped cross-section of 1 mm2. Notably, they were tested for operation over a wide range of volumetric flow rates, up to 20 ml/min. Moreover, the fabrication time (i.e., from design to the finished product) was <1 day, at an average material cost of ∼£5. The flow reactors have been applied to the production of both inorganic nanoparticles (silver nanospheres) and organic vesicular systems (liposomes), and their performance compared with reactors produced using more laborious fabrication methods. Numerical simulations were performed to characterise the transport of fluids and chemical species within the devices. The developed fabrication method is suitable for scaled-up fabrication of continuous-flow reactors, with potential for application in biotechnology and nanomedicine.


Subject(s)
Bioreactors , Cost-Benefit Analysis , Nanostructures/economics , Rheology/economics , Rheology/instrumentation , Computer-Aided Design , Dimethylpolysiloxanes/chemistry , Liposomes , Microfluidics , Nanospheres/chemistry , Nanospheres/ultrastructure , Nanostructures/chemistry , Nanostructures/ultrastructure , Particle Size , Printing, Three-Dimensional , Silver/chemistry
4.
Chemistry ; 16(34): 10439-46, 2010 Sep 10.
Article in English | MEDLINE | ID: mdl-20645345

ABSTRACT

The use of a water-soluble octacationic bis-calix[4]arene with divergent cavities (BC(4)) as a templating agent for the assembly of a tetraanionic porphyrin (CuTPPS) has allowed the noncovalent synthesis of 2D or 3D multiporphyrin assemblies. Self-assembly of CuTPPS and BC(4) molecules proceeded under hierarchical control in a stepwise fashion to yield discrete and isolable supramolecular nanostructures containing up to 33 molecular elements (i.e., the CuTPPS/BC(4) 17:16 assembly, obtained in less than three hours). The formation of these species could be conveniently monitored by means of UV/Vis spectroscopy by following the absorbance of the Soret band at 412 nm. In particular, the attainment of the pivotal CuTPPS/BC(4) 5:4 species with a cruciform structure, as the key fork-point intermediate for the subsequent formation of the higher 2D and 3D assemblies, has been demonstrated by light-scattering studies and by an unequivocal synthesis of mixed-porphyrin/calixarene 5:4 species involving the use of two different types of metallated porphyrins, namely CuTPPS and MnTPPS. The remarkable stability of these assemblies permits a stepwise synthesis that makes it possible to choose the desired porphyrin sequence.

SELECTION OF CITATIONS
SEARCH DETAIL
...