Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 36
Filter
Add more filters










Publication year range
1.
Int J Pharm ; 653: 123882, 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38342324

ABSTRACT

The pyridoxal 5'-dependent enzyme methionine γ-lyase (MGL) catalyzes the degradation of methionine. This activity has been profitable to develop an antitumor agent exploiting the strict dependence of most malignant cells on the availability of methionine. Indeed, methionine depletion blocks tumor proliferation and leads to an increased susceptibility to anticancer drugs. Here, we explore the conjugation of MGL to gold nanoparticles capped with citrate (AuNPs) as a novel strategy to deliver MGL to cancer cells. Measurements of Transmission Electron Microscopy, Dynamic Light Scattering, Asymmetrical Flow Field-Flow Fractionation, X-ray Photoelectron Spectroscopy, and Circular Dichroism allowed to achieve an extensive biophysical and biochemical characterization of the MGL-AuNP complex including particle size, size distribution, MGL loading yield, enzymatic activity, and impact of gold surface on protein structure. Noticeably, we found that activity retention was improved over time for the enzyme adsorbed to AuNPs with respect to the enzyme free in solution. The acquired body of knowledge on the nanocomplex properties and this encouraging stabilizing effect upon conjugation are the necessary basis for further studies aimed at the evaluation of the therapeutic potential of MGL-AuNP complex in a biological milieu.


Subject(s)
Antineoplastic Agents , Carbon-Sulfur Lyases , Metal Nanoparticles , Neoplasms , Humans , Gold/chemistry , Nanomedicine , Prospective Studies , Metal Nanoparticles/chemistry , Neoplasms/drug therapy , Neoplasms/pathology , Antineoplastic Agents/chemistry , Methionine
2.
Polymers (Basel) ; 15(17)2023 Aug 22.
Article in English | MEDLINE | ID: mdl-37688120

ABSTRACT

The delivery of drugs through the skin barrier at a predetermined rate is the aim of transdermal drug delivery systems (TDDSs). However, so far, TDDS has not fully attained its potential as an alternative to hypodermic injections and oral delivery. In this study, we presented a proof of concept of a dual drug-loaded patch made of nanoparticles (NPs) and ultrafine fibers fabricated by using one equipment, i.e., the electrospinning apparatus. Such NP/fiber systems can be useful to release drugs locally through the skin and the tympanic membrane. Briefly, dexamethasone (DEX)-loaded poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBHV) fiber meshes were decorated with rhodamine (RHO)-loaded poly(lactic-co-glycolic acid) (PLGA) NPs, with RHO representing as a second drug model. By properly tuning the working parameters of electrospinning, DEX-loaded PHBHV fibers (i.e., by electrospinning mode) and RHO-loaded PLGA NPs (i.e., by electrospray mode) were successfully prepared and straightforwardly assembled to form a TDDS patch, which was characterized via Fourier transform infrared spectroscopy and dynamometry. The patch was then tested in vitro using human dermal fibroblasts (HDFs). The incorporation of DEX significantly reduced the fiber mesh stiffness. In vitro tests showed that HDFs were viable for 8 days in contact with drug-loaded samples, and significant signs of cytotoxicity were not highlighted. Finally, thanks to a beaded structure of the fibers, a controlled release of DEX from the electrospun patch was obtained over 4 weeks, which may accomplish the therapeutic objective of a local, sustained and prolonged anti-inflammatory action of a TDDS, as is requested in chronic inflammatory conditions, and other pathological conditions, such as in sudden sensorineural hearing loss treatment.

3.
Pharmaceutics ; 15(5)2023 May 04.
Article in English | MEDLINE | ID: mdl-37242650

ABSTRACT

The widely expressed G protein-coupled apelin receptor (APJ) is activated by two bioactive endogenous peptides, apelin and ELABELA (ELA). The apelin/ELA-APJ-related pathway has been found involved in the regulation of many physiological and pathological cardiovascular processes. Increasing studies are deepening the role of the APJ pathway in limiting hypertension and myocardial ischaemia, thus reducing cardiac fibrosis and adverse tissue remodelling, outlining APJ regulation as a potential therapeutic target for heart failure prevention. However, the low plasma half-life of native apelin and ELABELA isoforms lowered their potential for pharmacological applications. In recent years, many research groups focused their attention on studying how APJ ligand modifications could affect receptor structure and dynamics as well as its downstream signalling. This review summarises the novel insights regarding the role of APJ-related pathways in myocardial infarction and hypertension. Furthermore, recent progress in designing synthetic compounds or analogues of APJ ligands able to fully activate the apelinergic pathway is reported. Determining how to exogenously regulate the APJ activation could help to outline a promising therapy for cardiac diseases.

4.
J Funct Biomater ; 14(3)2023 Mar 04.
Article in English | MEDLINE | ID: mdl-36976069

ABSTRACT

Type-1 diabetes is one of the most prevalent metabolic disorders worldwide. It results in a significant lack of insulin production by the pancreas and the ensuing hyperglycemia, which needs to be regulated through a tailored administration of insulin throughout the day. Recent studies have shown great advancements in developing an implantable artificial pancreas. However, some improvements are still required, including the optimal biomaterials and technologies to produce the implantable insulin reservoir. Here, we discuss the employment of two types of cyclic olefin copolymers (Topas 5013L-10 and Topas 8007S-04) for an insulin reservoir fabrication. After a preliminary thermomechanical analysis, Topas 8007S-04 was selected as the best material to fabricate a 3D-printed insulin reservoir due to its higher strength and lower glass transition temperature (Tg). Fiber deposition modeling was used to manufacture a reservoir-like structure, which was employed to assess the ability of the material to prevent insulin aggregation. Although the surface texture presents a localized roughness, the ultraviolet analysis did not detect any significant insulin aggregation over a timeframe of 14 days. These interesting results make Topas 8007S-04 cyclic olefin copolymer a potential candidate biomaterial for fabricating structural components in an implantable artificial pancreas.

5.
Molecules ; 27(23)2022 Dec 06.
Article in English | MEDLINE | ID: mdl-36500725

ABSTRACT

To improve the capability of non-woven polypropylene-based fabric (NWF-PP) used for face mask production to retain active biomolecules such as polyphenols, the surface functionalization of NWF-PP-directly cut from face masks-was carried out by employing cold plasma with oxygen. The nature/structure of the functional groups, as well as the degree of functionalization, were evaluated by ATR-FTIR and XPS by varying the experimental conditions (generator power, treatment time, and oxygen flow). The effects of plasma activation on mechanical and morphological characteristics were evaluated by stress-strain measurements and SEM analysis. The ability of functionalized NWF-PP to firmly anchor polyphenols extracted from cloves was estimated by ATR-FTIR analysis, IR imaging, extractions in physiological solution, and OIT analysis (before and after extraction), as well as by SEM analysis. All the results obtained converge in showing that, although the plasma treatment causes changes-not only on the surface-with certain detriment to the mechanical performance of the NWF-PP, the incorporated functionalities are able to retain/anchor the active molecules extracted from the cloves, thus stabilizing the treated surfaces against thermo-oxidation even after prolonged extraction.


Subject(s)
Plasma Gases , Polyphenols , Polypropylenes/chemistry , Oxygen
6.
Int J Mol Sci ; 23(21)2022 Oct 28.
Article in English | MEDLINE | ID: mdl-36361860

ABSTRACT

Studies have shown a link between the downregulation of connexin 43 (Cx43), the predominant isoform in cardiac gap junctions, and high susceptibility to cardiac arrhythmias and cardiomyocyte death. Non-myocytic cells (NMCs), the most abundant component of the heart, exert multiple cardiac functions and represent an important therapeutic target for diseased cardiac tissue. A few studies have investigated the effect of Apelin-13, an endogenous peptide with a key role in various cardiovascular functions, on Cx43 expression in cardiomyocytes. However, it remained unknown whether Apelin-13 influences Cx43 expression in NMCs. Here, we found that in NMCs, Cx43 protein expression increased after Apelin-13 treatment (100 nM for 48 h). Furthermore, dye transfer assays proved that Apelin-13-treated NMCs had a greater ability to communicate with surrounding cardiomyocytes, and this effect was abrogated by carbenoxolone, a gap junction inhibitor. Interestingly, we showed that Apelin-13 increased Cx43 through autophagy inhibition, as proved by the upregulation of p62 and LC3I, acting as 3-MA, a well-known autophagy inhibitor. In addition, Apelin-13-induced AKT and mTOR phosphorylation was abolished by LY294002 and rapamycin inhibitors resulting in Cx43 increased suppression. These results open the possibility of targeting gap junctions in NMCs with Apelin-13 as an exciting therapeutic approach with great potential.


Subject(s)
Connexin 43 , Proto-Oncogene Proteins c-akt , Connexin 43/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction , Autophagy , TOR Serine-Threonine Kinases/metabolism , Myocytes, Cardiac/metabolism , Gap Junctions/metabolism
7.
Molecules ; 27(19)2022 Sep 21.
Article in English | MEDLINE | ID: mdl-36234738

ABSTRACT

Polyhydroxyalkanoates (PHAs) are a family of biopolyesters synthesized by various microorganisms. Due to their biocompatibility and biodegradation, PHAs have been proposed for biomedical applications, including tissue engineering scaffolds. Olive leaf extract (OLE) can be obtained from agri-food biowaste and is a source of polyphenols with remarkable antioxidant properties. This study aimed at incorporating OLE inside poly(hydroxybutyrate-co-hydroxyvalerate) (PHBHV) fibers via electrospinning to obtain bioactive bio-based blends that are useful in wound healing. PHBHV/OLE electrospun fibers with a size of 1.29 ± 0.34 µm were obtained. Fourier transform infrared chemical analysis showed a uniform surface distribution of hydrophilic -OH groups, confirming the presence of OLE in the electrospun fibers. The main OLE phenols were released from the fibers within 6 days. The biodegradation of the scaffolds in phosphate buffered saline was investigated, demonstrating an adequate stability in the presence of metalloproteinase 9 (MMP-9), an enzyme produced in chronic wounds. The scaffolds were preliminarily tested in vitro with HFFF2 fibroblasts and HaCaT keratinocytes, suggesting adequate cytocompatibility. PHBHV/OLE fiber meshes hold promising features for wound healing, including the treatment of ulcers, due to the long period of durability in an inflamed tissue environment and adequate cytocompatibility.


Subject(s)
Polyhydroxyalkanoates , Antioxidants/pharmacology , Hydroxybutyrates/pharmacology , Matrix Metalloproteinase 9 , Olea , Pentanoic Acids , Phosphates , Plant Extracts , Polyesters/chemistry , Polyhydroxyalkanoates/chemistry , Polyphenols , Prospective Studies , Tissue Engineering , Tissue Scaffolds/chemistry , Wound Healing
8.
Biomedicines ; 10(9)2022 Aug 24.
Article in English | MEDLINE | ID: mdl-36140171

ABSTRACT

The recent advances in nanotechnology are revolutionizing preventive and therapeutic approaches to treating cardiovascular diseases. Controlling the extracellular matrix metalloproteinase (MMP) activation and expression in the failing human left ventricular myocardium represents a significant therapeutic target for heart disease. In this study, we used molecularly imprinting polymers (MIPs) to restore the correct balance between MMPs and their tissue inhibitors (TIMPs), and explored the potential of this technique exhaustively through chemical synthesis, physicochemical and biological characterizations, and computational chemistry methods. By molecular dynamics simulations based on classical force fields, we simulated the early stages of the imprinting process in solution disclosing the pivotal interaction established between the monomers and the MMP9 protein template. The average interaction energies of methacrylic acid (MAA) and poly (ethylene glycol) ethyl ether methacrylate (PEG) units were in the ranges 17-22 and 30-37 kcal/mol, respectively. At low coverage, the PEG monomers seemed firmly anchored to the protein surface and were not displaced by water, while only about 20% of MAA was replaced by water. The synthesis of MIPs was successfully with a monomer conversion higher than 99% and the production of spherical particles with average diameter of 344 ± 33 nm. HPLC analysis showed a specific recognition factor of MMP9 on MIPs of about 1.3. FT-IR Chemical Imaging confirmed the mechanisms necessary to generate a "selective memory" of the MIPs towards the enzyme. HPLC results indicated that the rebound amount of both TIMP1 and MMP2 to MIPs is lower than that of the template, showing a selectivity factor of 2.1 and 2.3, respectively. Preliminary tests on the effect of MIPs on H9C2 cells revealed that this treatment has no cytotoxic effects.

9.
Int J Mol Sci ; 22(23)2021 Dec 02.
Article in English | MEDLINE | ID: mdl-34884856

ABSTRACT

Myocardial infarction (MI) is one of the leading causes of heart-related deaths worldwide. Following MI, the hypoxic microenvironment triggers apoptosis, disrupts the extracellular matrix and forms a non-functional scar that leads towards adverse left ventricular (LV) remodelling. If left untreated this eventually leads to heart failure. Besides extensive advancement in medical therapy, complete functional recovery is never accomplished, as the heart possesses limited regenerative ability. In recent decades, the focus has shifted towards tissue engineering and regenerative strategies that provide an attractive option to improve cardiac regeneration, limit adverse LV remodelling and restore function in an infarcted heart. Acellular scaffolds possess attractive features that have made them a promising therapeutic candidate. Their application in infarcted areas has been shown to improve LV remodelling and enhance functional recovery in post-MI hearts. This review will summarise the updates on acellular scaffolds developed and tested in pre-clinical and clinical scenarios in the past five years with a focus on their ability to overcome damage caused by MI. It will also describe how acellular scaffolds alone or in combination with biomolecules have been employed for MI treatment. A better understanding of acellular scaffolds potentialities may guide the development of customised and optimised therapeutic strategies for MI treatment.


Subject(s)
Cardiotonic Agents/pharmacology , Tissue Scaffolds , Ventricular Remodeling , Animals , Biocompatible Materials , Cardiotonic Agents/chemistry , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Extracellular Matrix/chemistry , Extracellular Vesicles/chemistry , Genetic Therapy/methods , Humans , Intercellular Signaling Peptides and Proteins/chemistry , Intercellular Signaling Peptides and Proteins/pharmacology , Myocardial Infarction/pathology , Polymers/chemistry , Proteins/chemistry
10.
Biomedicines ; 9(9)2021 Sep 21.
Article in English | MEDLINE | ID: mdl-34572461

ABSTRACT

Chemotherapeutics represent the standard treatment for a wide range of cancers. However, these agents also affect healthy cells, thus leading to severe off-target effects. Given the non-selectivity of the commonly used drugs, any increase in the selective tumor tissue uptake would represent a significant improvement in cancer therapy. Recently, the use of gene therapy to completely remove the lesion and avoid the toxicity of chemotherapeutics has become a tendency in oncotherapy. Ideally, the genetic material must be safely transferred from the site of administration to the target cells, without involving healthy tissues. This can be achieved by encapsulating genes into non-viral carriers and modifying their surface with ligands with high selectivity and affinity for a relevant receptor on the target cells. Hence, in this work we evaluate the use of terpolymer-based nanocapsules for the targeted delivery of DNA toward cancer cells. The surface of the nanocapsules is decorated with folic acid to actively target the folate receptors overexpressed on a variety of cancer cells. The nanocapsules demonstrate a good ability of encapsulating and releasing DNA. Moreover, the presence of the targeting moieties on the surface of the nanocapsules favors cell uptake, opening up the possibility of more effective therapies.

11.
Nanomaterials (Basel) ; 10(8)2020 Aug 12.
Article in English | MEDLINE | ID: mdl-32806691

ABSTRACT

To deliver on the promise of cardiac regeneration, an integration process between an emerging field, nanomedicine, and a more consolidated one, tissue engineering, has begun. Our work aims at summarizing some of the most relevant prevailing cases of nanotechnological approaches applied to tissue engineering with a specific interest in cardiac regenerative medicine, as well as delineating some of the most compelling forthcoming orientations. Specifically, this review starts with a brief statement on the relevant clinical need, and then debates how nanotechnology can be combined with tissue engineering in the scope of mimicking a complex tissue like the myocardium and its natural extracellular matrix (ECM). The interaction of relevant stem, precursor, and differentiated cardiac cells with nanoengineered scaffolds is thoroughly presented. Another correspondingly relevant area of experimental study enclosing both nanotechnology and cardiac regeneration, e.g., nanoparticle applications in cardiac tissue engineering, is also discussed.

12.
Biointerphases ; 15(3): 031004, 2020 05 20.
Article in English | MEDLINE | ID: mdl-32434336

ABSTRACT

Sensorineural hearing loss (SNHL) affects the inner ear compartment and can be caused by different factors. Usually, the lack, death, or malfunction of sensory cells deputed to transduction of mechanic-into-electric signals leads to SNHL. To date, the therapeutic option for patients impaired by severe or profound SNHL is the cochlear implant (CI), a high-tech electronic device replacing the entire cochlear function. Piezoelectric materials have catalyzed attention to stimulate the auditory neurons by simply mimicking the function of the cochlear sensory epithelium. In this study, the authors investigated lithium niobate (LiNbO3) as a potential candidate material for next generation CIs. LiNbO3 nanoparticles resulted otocompatible with inner ear cells in vitro, had a pronounced immunomodulatory activity, enhanced human beta-defensin in epithelial cells, and showed direct antibacterial activity against P. aeruginosa. Moreover, LiNbO3 nanoparticles were incorporated into poly(vinylidene fluoride-trifluoro ethylene) fibers via electrospinning, which enhanced the piezoelectric response. Finally, the resulting fibrous composite structures support human neural-like cell growth in vitro, thus showing promising features to be used in new inner ear devices.


Subject(s)
Ear, Inner/physiology , Nanoparticles/chemistry , Niobium/chemistry , Oxides/chemistry , Animals , Anti-Bacterial Agents/pharmacology , Cell Line , Cell Survival , Humans , Immunologic Factors/pharmacology , Mice , Microbial Sensitivity Tests , Nanoparticles/ultrastructure , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/physiology , Rats , Spectroscopy, Fourier Transform Infrared , Staphylococcus aureus/drug effects , Staphylococcus aureus/physiology , Temperature
13.
Int J Mol Sci ; 20(20)2019 Oct 16.
Article in English | MEDLINE | ID: mdl-31623142

ABSTRACT

The objective of this study was the preparation and physico-chemical, mechanical, biological, and functional characterization of a multifunctional coating for an innovative, fully implantable device. The multifunctional coating was designed to have three fundamental properties: adhesion to device, close mechanical resemblance to human soft tissues, and control of the inflammatory response and tissue repair process. This aim was fulfilled by preparing a multilayered coating based on three components: a hydrophilic primer to allow device adhesion, a poly(vinyl alcohol) hydrogel layer to provide good mechanical compliance with the human tissue, and a layer of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) fibers. The use of biopolymer fibers offered the potential for a long-term interface able to modulate the release of an anti-inflammatory drug (dexamethasone), thus contrasting acute and chronic inflammation response following device implantation. Two copolymers, poly(vinyl acetate-acrylic acid) and poly(vinyl alcohol-acrylic acid), were synthetized and characterized using thermal analysis (DSC, TGA), Fourier transform infrared spectroscopy (FT-IR chemical imaging), in vitro cell viability, and an adhesion test. The resulting hydrogels were biocompatible, biostable, mechanically compatible with soft tissues, and able to incorporate and release the drug. Finally, the multifunctional coating showed a good adhesion to titanium substrate, no in vitro cytotoxicity, and a prolonged and controlled drug release.


Subject(s)
Coated Materials, Biocompatible/chemistry , Prostheses and Implants , Chemical Phenomena , Chemistry Techniques, Synthetic , Humans , Hydrogels/chemistry , Mechanical Phenomena , Thermodynamics
14.
J Tissue Eng Regen Med ; 13(7): 1253-1264, 2019 07.
Article in English | MEDLINE | ID: mdl-31050859

ABSTRACT

The protection from ischaemia-reperfusion-associated myocardial infarction worsening remains a big challenge. We produced a bioartificial 3D cardiac patch with cardioinductive properties on stem cells. Its multilayer structure was functionalised with clinically relevant doses of adenosine. We report here the first study on the potential of these cardiac patches in the controlled delivery of adenosine into the in vivo ischaemic-reperfused pig heart. A Fourier transform infrared chemical imaging approach allowed us to perform a characterisation, complementary to the histological and biochemical analyses on myocardial samples after in vivo patch implantation, increasing the number of investigations and results on the restricted number of pigs (n = 4) employed in this feasibility step. In vitro tests suggested that adenosine was completely released by a functionalised patch, a data that was confirmed in vivo after 24 hr from patch implantation. Moreover, the adenosine-loaded patch enabled a targeted delivery of the drug to the ischaemic-reperfused area of the heart, as highlighted by the activation of the pro-survival signalling reperfusion injury salvage kinases pathway. At 3 months, though limited to one animal, the used methods provided a picture of a tissue in dynamic conditions, associated to the biosynthesis of new collagen and to a non-fibrotic outcome of the healing process underway. The synergistic effect between the functionalised 3D cardiac patch and adenosine cardioprotection might represent a promising innovation in the treatment of reperfusion injury. As this is a feasibility study, the clinical implications of our findings will require further in vivo investigation on larger numbers of ischaemic-reperfused pig hearts.


Subject(s)
Adenosine , Gelatin , Myocardial Reperfusion Injury/drug therapy , Myocardium , Polylactic Acid-Polyglycolic Acid Copolymer , Adenosine/chemistry , Adenosine/pharmacology , Animals , Disease Models, Animal , Drug Implants/chemistry , Drug Implants/pharmacology , Female , Gelatin/chemistry , Gelatin/pharmacology , Myocardial Reperfusion Injury/metabolism , Myocardial Reperfusion Injury/pathology , Myocardium/metabolism , Myocardium/pathology , Polylactic Acid-Polyglycolic Acid Copolymer/chemistry , Polylactic Acid-Polyglycolic Acid Copolymer/pharmacology , Swine
15.
Mater Sci Eng C Mater Biol Appl ; 95: 19-28, 2019 Feb 01.
Article in English | MEDLINE | ID: mdl-30573241

ABSTRACT

Cystic fibrosis (CF) is a progressive genetic disease caused by mutations in the gene that produces the CF transmembrane conductance regulator (CFTR) protein. The malfunction of the CFTR protein causes a thick buildup of mucus in the lungs that clogs the airways and traps bacteria, thus leading to infections, extensive lung damage and respiratory failure. Micro-delivery systems are currently being investigated as an efficient way to cross the viscous and complex architecture of the CF mucus. In this study, we produced synthetic and natural microparticles (MPs) based on poly(dl­lactide­co­glycolide) (PLGA) or gellan gum through tailored water/oil emulsion procedures. Morphological and physico-chemical characterizations were carried out on both classes of MPs showing particles having diameters within suitable ranges to reach the CF airways. In vitro biocompatibility tests were also performed on both MPs using a human lung cancer cell line (A549) demonstrating that treatment with MPs induces no cytotoxic effects. Both classes of MPs were loaded with a mucolytic agent (N­acetyl cysteine, NAC) and their release kinetics evaluated using high performance liquid chromatography (HPLC). The analysis pointed out that the amount of NAC released from MPs resulted in a dose-dependent increment, with a rapid release kinetic to satisfy the requirement for inducing an early mucus degradation. Finally, mucolytic action of NAC-loaded MPs was evaluated in an artificial sputum model through its rheological analysis obtaining the lowest viscosity profile after the addition of drug-loaded MPs. Taken together, gained results allowed us to select suitable MPs as potential drug targeting platforms having a mucolytic action for CF treatment.


Subject(s)
Biocompatible Materials/metabolism , Cystic Fibrosis/metabolism , Mucus/metabolism , A549 Cells , Adult , Cell Proliferation , Chromatography, High Pressure Liquid , Drug Delivery Systems/methods , Humans , Polylactic Acid-Polyglycolic Acid Copolymer/metabolism , Sputum/metabolism
16.
Front Pharmacol ; 9: 228, 2018.
Article in English | MEDLINE | ID: mdl-29662451

ABSTRACT

The use of nanomaterials in medicine has grown very rapidly, leading to a concern about possible health risks. Surely, the application of nanotechnology in medicine has many significant potentialities as it can improve human health in at least three different ways: by contributing to early disease diagnosis, improved treatment outcomes and containment of health care costs. However, toxicology or safety assessment is an integral part of any new medical technology and the nanotechnologies are no exception. The principle aim of nanosafety studies in this frame is to enable safer design of nanomedicines. The most urgent need is finding and validating novel approaches able to extrapolate acute in vitro results for the prediction of chronic in vivo effects and to this purpose a few European initiatives have been launched. While a "safe-by-design" process may be considered as utopic, "safer-by-design" is probably a reachable goal in the field of nanomedicine.

17.
Mater Sci Eng C Mater Biol Appl ; 75: 1427-1434, 2017 Jun 01.
Article in English | MEDLINE | ID: mdl-28415434

ABSTRACT

A large number of pathologies require the resection of the bowel and anastomoses to rejoin the two remaining stumps to regain lumen patency. Various materials have been used to rejoin one bowel end to the other such as catgut, stainless steel, and absorbable sutures. The present method for anastomosis surgery uses an entero-entero anastomosis (EEA) circular stapler with only a staple line. This method can have some drawbacks, such as intracellular fluid leakage and local inflammations. The aim of this study is to design and develop a novel bioartificial polymer with a ring shape made of polyvinyl alcohol (PVA) and gelatin (80/20 ratio (w/w)) loaded both directly with acetylsalicylic acid and with nanoparticles incorporating the same drug to reduce local inflammation even for a prolonged period of time. A physical method (8cycles freezing/thawing) was used to obtain a crosslinked bioartificial shape memory ring. Mechanical analysis showed a storage modulus having a comparable value with that of the human colon. HPLC analysis pointed out a sustained and prolonged release of the anti-inflammatory drug both immediately after anastomosis surgery and during healing period. Cell culture tests indicated the cytocompatibility of the bioartificial device. A shape memory of the hydrogel prepared in ring form was observed at 37°C after immersion in water. These bioartificial devices can represent a new approach to serve as a multifunctional anastomotic ring.


Subject(s)
Fibroblasts/metabolism , Gelatin/chemistry , Hydrogels/chemistry , Nanoparticles/chemistry , Polyvinyl Alcohol/chemistry , Water/chemistry , Anastomosis, Surgical , Aspirin/chemistry , Cells, Cultured , Humans
18.
Stem Cells Int ; 2016: 7176154, 2016.
Article in English | MEDLINE | ID: mdl-27822229

ABSTRACT

The biomaterial scaffold plays a key role in most tissue engineering strategies. Its surface properties, micropatterning, degradation, and mechanical features affect not only the generation of the tissue construct in vitro, but also its in vivo functionality. The area of myocardial tissue engineering still faces significant difficulties and challenges in the design of bioactive scaffolds, which allow composition variation to accommodate divergence in the evolving myocardial structure. Here we aimed at verifying if a microstructured bioartificial scaffold alone can provoke an effect on stem cell behavior. To this purpose, we fabricated microstructured bioartificial polymeric constructs made of PLGA/gelatin mimicking anisotropic structure and mechanical properties of the myocardium. We found that PLGA/gelatin scaffolds promoted adhesion, elongation, ordered disposition, and early myocardial commitment of human mesenchymal stem cells suggesting that these constructs are able to crosstalk with stem cells in a precise and controlled manner. At the same time, the biomaterial degradation kinetics renders the PLGA/gelatin constructs very attractive for myocardial regeneration approaches.

19.
J Appl Biomater Funct Mater ; 14(2): e129-36, 2016 May 18.
Article in English | MEDLINE | ID: mdl-27056481

ABSTRACT

BACKGROUND: The accumulation of amyloid beta protein in the brain causes the cognitive impairment observed in neurodegenerative pathologies such as Alzheimer's disease. The present study aimed to test the hypothesis that a rapid removal of amyloid beta protein peptides from the blood by an extracorporeal purification system could represent an alternative solution for the treatment of patients suffering from this neurodegenerative disease. METHODS: In this regard, we investigated the specific recognition properties of a molecularly imprinted membrane based on poly(ethylene-co-vinyl alcohol) toward the amyloid beta protein fragment 25-35 (AbP), the more neurotoxic domain of amyloid beta protein. A chemical modification of the copolymer backbone using succinic anhydride was also performed to favor the formation of carboxylic groups and thus improve imprinting performance. RESULTS: The physico-chemical, morphological, mechanical and functional characterisations gave interesting results confirming the ability of imprinted membranes to in vitro rebind AbP. CONCLUSIONS: This work represents a proof of concept regarding the development of a biocompatible polymer membrane capable of selectively removing amyloid beta peptide from the blood and consequently from the cerebrospinal fluid.


Subject(s)
Amyloid beta-Peptides/chemistry , Membranes, Artificial , Molecular Imprinting , Peptide Fragments/chemistry , Polyvinyls/chemistry , Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Humans , Peptide Fragments/metabolism
20.
J Appl Biomater Funct Mater ; 13(4): e340-5, 2015 Dec 18.
Article in English | MEDLINE | ID: mdl-26391865

ABSTRACT

PURPOSE: Nano-drug delivery systems based on polymeric biomaterials have received considerable interest as drug delivery vehicles. In this work, radical polymerization was carried out in order to obtain nanoparticles based on a new acrylate terpolymer (PBMA-(PEG)MEMA-PDMAEMA). METHODS: Nanoparticles were developed in the form both of nanospheres and nanocapsules, an innovative kind of hollow nanoparticles with a great potential because of their low effective density and high specific surface area. The ability of the nanoparticles to load and then release a nucleic acid (DNA) to be used in cancer treatment was also investigated. RESULTS: Scanning electron microscopy analysis showed a spherical shape, nanometric dimensions, and a homogeneous distribution of the nanoparticles, also confirmed by dynamic light scattering measurements. Fourier-transform infrared spectroscopy chemical imaging analysis carried out on the nanocapsules before and after removal of the core demonstrated the presence of the cavity. High-performance liquid chromatography analysis confirmed good encapsulation efficiency of DNA both for nanospheres and nanocapsules. Drug release tests showed controlled release kinetics for both the systems with a high release of DNA in the first hours. In vitro MTT assay showed that the particles do not have cytotoxic effects on the cells. CONCLUSIONS: The preliminary investigation showed that the terpolymer-based nanoparticles developed in this study could be good candidates to be used as innovative and versatile gene delivery systems.


Subject(s)
DNA/metabolism , Nanoparticles/chemistry , Polymers/chemistry , 3T3 Cells , Adsorption , Animals , Cell Survival/drug effects , DNA/chemistry , Drug Carriers/chemistry , Drug Carriers/toxicity , Mice , Nanoparticles/toxicity , Nanoparticles/ultrastructure , Particle Size , Spectroscopy, Fourier Transform Infrared
SELECTION OF CITATIONS
SEARCH DETAIL
...