Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 22(7)2022 Apr 03.
Article in English | MEDLINE | ID: mdl-35408380

ABSTRACT

Passive radar is a technology that has huge potential for airspace monitoring, taking advantage of existing transmissions. However, to predict whether particular targets can be measured in a particular scenario, it is necessary to be able to model the received signal. In this paper, we present the results of a campaign in which a Pilatus PC-12 single-engine aircraft was measured with a passive radar system relying on DVB-T transmission from a single transmitter. We then present our work to simulate the bistatic RCS of the aircraft along its flight track, using both the method of moments and the shooting and bouncing ray solvers, assess the uncertainty in the simulations, and compare against the measurements. We find that our simulated RCS values are useful in predicting whether or not detection occurs. However, we see poor agreement between simulated and measured RCS values where measurements are available, which we attribute primarily to the difficulties in extracting RCS measurements from the data and to unmodeled transmission and received path effects.

2.
Sensors (Basel) ; 21(13)2021 Jul 03.
Article in English | MEDLINE | ID: mdl-34283121

ABSTRACT

This paper deals with the problem of detection and direction of arrival (DOA) estimation of slowly moving targets against clutter in multichannel mobile passive radar. A dual cancelled channel space-time adaptive processing (STAP) scheme is proposed, aiming at reducing the system computational complexity, as well as the amount of required training data, compared to a conventional full array solution. The proposed scheme is shown to yield comparable target detection capability and DOA estimation accuracy with respect to the corresponding full array solution, despite the lower computational cost required. Moreover, it offers increased robustness against adaptivity losses, operating effectively even in the presence of a limited set of training data, as often available in the highly non-homogeneous clutter scenarios experienced in bistatic passive radar. The effectiveness of the proposed scheme and its suitability for passive GMTI are demonstrated against both simulated and experimental data collected by a DVB-T-based multichannel mobile passive radar.


Subject(s)
Radar , Signal Processing, Computer-Assisted
3.
Sensors (Basel) ; 21(1)2020 Dec 24.
Article in English | MEDLINE | ID: mdl-33374426

ABSTRACT

Research in passive radar has moved its focus towards passive radar on moving platforms in recent years with the purpose of moving target indication and ground imaging via synthetic aperture radar. This is also fostered by the progress in hardware miniaturization, which alleviates the installation of the required hardware on moving platforms. Terrestrial transmitters, commonly known as illuminators of opportunity in the passive radar community, usually emit the signals in the Very High Frequency (VHF) or Ultra High Frequency (UHF) band. Due to the long wavelengths of the VHF/UHF band, there are constraints on the size of the used antenna elements, and therefore, the number of antenna elements to be employed is limited, especially as the platform carrying the passive radar system is intended to be small, potentially even an unmanned aerial vehicle. In order to detect moving targets hidden by Doppler shifted clutter returns, one common approach is to suppress the clutter returns by applying clutter suppression techniques that rely on spatial and temporal degrees of freedom, such as Displaced Phase Center Antenna (DPCA) or Space-Time Adaptive Processing. It has been shown that the DPCA approach is a meaningful technique to suppress the clutter if two antenna elements are employed. However, if the employed receiving channels are not carefully calibrated, the clutter suppression is shown to be not effective. Here, we suggest a three-stage calibration technique in order to perform the calibration of two receiving channels, which involves the exploitation of the direct signal, a data-adaptive amplitude calibration, and finally, a data-adaptive calibration of phase mismatches between both receiving channels by the estimation of the Minimum Variance Power Spectrum of the clutter. The validity of the proposed approach is shown with simulated data and demonstrated on real data from a fast ground moving platform, showing improved clutter cancellation capabilities.

SELECTION OF CITATIONS
SEARCH DETAIL
...