Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
1.
Science ; 382(6668): 275-276, 2023 Oct 20.
Article in English | MEDLINE | ID: mdl-37856602
2.
Mol Ecol ; 31(21): 5455-5467, 2022 11.
Article in English | MEDLINE | ID: mdl-36043238

ABSTRACT

The koala, one of the most iconic Australian wildlife species, is facing several concomitant threats that are driving population declines. Some threats are well known and have clear methods of prevention (e.g., habitat loss can be reduced with stronger land-clearing control), whereas others are less easily addressed. One of the major current threats to koalas is chlamydial disease, which can have major impacts on individual survival and reproduction rates and can translate into population declines. Effective management strategies for the disease in the wild are currently lacking, and, to date, we know little about the determinants of individual susceptibility to disease. Here, we investigated the genetic basis of variation in susceptibility to chlamydia using one of the most intensively studied wild koala populations. We combined data from veterinary examinations, chlamydia testing, genetic sampling and movement monitoring. Out of our sample of 342 wild koalas, 60 were found to have chlamydia. Using genotype information on 5007 SNPs to investigate the role of genetic variation in determining disease status, we found no evidence of inbreeding depression, but a heritability of 0.11 (95% CI: 0.06-0.23) for the probability that koalas had chlamydia. Heritability of susceptibility to chlamydia could be relevant for future disease management, as it suggests adaptive potential for the population.


Subject(s)
Chlamydia Infections , Chlamydia , Inbreeding Depression , Phascolarctidae , Animals , Phascolarctidae/genetics , Australia , Chlamydia/genetics , Chlamydia Infections/genetics , Chlamydia Infections/veterinary
3.
Ecol Evol ; 12(1): e8459, 2022 Jan.
Article in English | MEDLINE | ID: mdl-35127011

ABSTRACT

Effective conservation requires accurate data on population genetic diversity, inbreeding, and genetic structure. Increasingly, scientists are adopting genetic non-invasive sampling (gNIS) as a cost-effective population-wide genetic monitoring approach. gNIS has, however, known limitations which may impact the accuracy of downstream genetic analyses. Here, using high-quality single nucleotide polymorphism (SNP) data from blood/tissue sampling of a free-ranging koala population (n = 430), we investigated how the reduced SNP panel size and call rate typical of genetic non-invasive samples (derived from experimental and field trials) impacts the accuracy of genetic measures, and also the effect of sampling intensity on these measures. We found that gNIS at small sample sizes (14% of population) can provide accurate population diversity measures, but slightly underestimated population inbreeding coefficients. Accurate measures of internal relatedness required at least 33% of the population to be sampled. Accurate geographic and genetic spatial autocorrelation analysis requires between 28% and 51% of the population to be sampled. We show that gNIS at low sample sizes can provide a powerful tool to aid conservation decision-making and provide recommendations for researchers looking to apply these techniques to free-ranging systems.

5.
Sci Rep ; 10(1): 20976, 2020 12 01.
Article in English | MEDLINE | ID: mdl-33262365

ABSTRACT

Members of the genus Nannizziopsis are emerging fungal pathogens of reptiles that have been documented as the cause of fatal mycoses in a wide range of reptiles in captivity. Cases of severe, proliferative dermatitis, debility and death have been detected in multiple free-living lizard species from locations across Australia, including a substantial outbreak among Eastern water dragons (Intellagama lesueurii) in Brisbane, Queensland. We investigated this disease in a subset of severely affected lizards and identified a clinically consistent syndrome characterized by hyperkeratosis, epidermal hyperplasia, dermal inflammation, necrosis, ulceration, and emaciation. Using a novel fungal isolation method, histopathology, and molecular techniques, we identified the etiologic agent as Nannizziopsis barbatae, a species reported only once previously from captive lizards in Australia. Here we report severe dermatomycosis caused by N. barbatae in five species of Australian lizard, representing the first cases of Nannizziopsis infection among free-living reptiles, globally. Further, we evaluate key pathogen and host characteristics that indicate N. barbatae-associated dermatomycosis may pose a concerning threat to Australian lizards.


Subject(s)
Dermatomycoses/microbiology , Fungi/physiology , Lizards/microbiology , Animals , Dermatomycoses/pathology , Fungi/isolation & purification , Likelihood Functions
6.
Mol Ecol ; 29(13): 2416-2430, 2020 07.
Article in English | MEDLINE | ID: mdl-32470998

ABSTRACT

Habitat destruction and fragmentation are increasing globally, forcing surviving species into small, isolated populations. Isolated populations typically experience heightened inbreeding risk and associated inbreeding depression and population decline; although individuals in these populations may mitigate these risks through inbreeding avoidance strategies. For koalas, as dietary specialists already under threat in the northern parts of their range, increased habitat fragmentation and associated inbreeding costs are of great conservation concern. Koalas are known to display passive inbreeding avoidance through sex-biased dispersal, although population isolation will reduce dispersal pathways. We tested whether free-ranging koalas display active inbreeding avoidance behaviours. We used VHF tracking data, parentage reconstruction, and veterinary examination results to test whether free-ranging female koalas avoid mating with (a) more closely related males; and (b) males infected with sexually transmitted Chlamydia pecorum. We found no evidence that female koalas avoid mating with relatively more related available mates. In fact, as the relatedness of potential mates increases, so did inbreeding events. We also found no evidence that female koalas can avoid mating with males infected with C. pecorum. The absence of active inbreeding avoidance mechanisms in koalas is concerning from a conservation perspective, as small, isolated populations may be at even higher risk of inbreeding depression than expected. At risk koala populations may require urgent conservation interventions to augment gene flow and reduce inbreeding risks. Similarly, if koalas are not avoiding mating with individuals with chlamydial disease, populations may be at higher risk from disease than anticipated, further impacting population viability.


Subject(s)
Chlamydia Infections , Inbreeding , Phascolarctidae , Animals , Chlamydia , Chlamydia Infections/veterinary , Female , Male , Phascolarctidae/genetics , Phascolarctidae/microbiology , Sexual Behavior, Animal
7.
Ecology ; 100(9): e02786, 2019 09.
Article in English | MEDLINE | ID: mdl-31188468

ABSTRACT

Social dispersal is an important feature of population dynamics. When female mammals occur in polygynous groups, their dispersal decisions are conditioned by various female-, male-, and group-related factors. Among them, the influence of disease often remains difficult to assess. To address this challenge, we used long-term monitoring data from two gorilla populations (Gorilla gorilla gorilla) affected by infectious skin disease lesions. After controlling for other potentially influential factors, we investigated to which extent disease avoidance drives the dispersal decisions of gorilla females. We showed that the infection of a silverback of a breeding group by the skin disease increased the probability of adult females to emigrate. Moreover, adult females avoided breeding groups with a high prevalence of skin disease by emigrating from them and immigrating into healthier ones. Age of the breeding group was also an important factor. Adult females left older groups, near the end of a male tenure, to join younger ones led by younger fully grown silverbacks that could be of high reproductive and protective value. Our study highlights that, although females select for high-quality males, disease avoidance is a critical driver of their dispersion decision.


Subject(s)
Gorilla gorilla , Reproduction , Animals , Breeding , Female , Male , Population Dynamics
8.
Mol Ecol Resour ; 19(4): 957-969, 2019 Jul.
Article in English | MEDLINE | ID: mdl-30681773

ABSTRACT

Wildlife diseases are a recognized driver of global biodiversity loss, have substantial economic impacts, and are increasingly becoming a threat to human health. Disease surveillance is critical but remains difficult in the wild due to the substantial costs and potential biases associated with most disease detection methods. Noninvasive scat surveys have been proposed as a health monitoring methodology to overcome some of these limitations. Here, we use the known threat of Chlamydia disease to the iconic, yet vulnerable, koala Phascolarctos cinereus to compare three methods for Chlamydia detection in scats: multiplex quantitative PCR, next generation sequencing, and a detection dog specifically trained on scats from Chlamydia-infected koalas. All three methods demonstrated 100% specificity, while sensitivity was variable. Of particular interest is the variable sensitivity of these diagnostic tests to detect sick individuals (i.e., not only infection as confirmed by Chlamydia-positive swabs, but with observable clinical signs of the disease); for koalas with urogenital tract disease signs, sensitivity was 78% with quantitative PCR, 50% with next generation genotyping and 100% with the detection dog method. This may be due to molecular methods having to rely on high-quality DNA whereas the dog most likely detects volatile organic compounds. The most appropriate diagnostic test will vary with disease prevalence and the specific aims of disease surveillance. Acknowledging that detection dogs might not be easily accessible to all, the future development of affordable and portable "artificial noses" to detect diseases from scats in the field might enable cost-effective, rapid and large-scale disease surveillance.


Subject(s)
Biological Assay/methods , Chlamydia Infections/veterinary , Chlamydia/isolation & purification , Feces/microbiology , High-Throughput Nucleotide Sequencing/methods , Multiplex Polymerase Chain Reaction/methods , Phascolarctidae , Animals , Chlamydia/genetics , Population Health , Real-Time Polymerase Chain Reaction/methods , Sensitivity and Specificity
9.
Ecol Evol ; 8(6): 3139-3151, 2018 03.
Article in English | MEDLINE | ID: mdl-29607013

ABSTRACT

Maintaining genetic diversity is a crucial component in conserving threatened species. For the iconic Australian koala, there is little genetic information on wild populations that is not either skewed by biased sampling methods (e.g., sampling effort skewed toward urban areas) or of limited usefulness due to low numbers of microsatellites used. The ability to genotype DNA extracted from koala scats using next-generation sequencing technology will not only help resolve location sample bias but also improve the accuracy and scope of genetic analyses (e.g., neutral vs. adaptive genetic diversity, inbreeding, and effective population size). Here, we present the successful SNP genotyping (1272 SNP loci) of koala DNA extracted from scat, using a proprietary DArTseq™ protocol. We compare genotype results from two-day-old scat DNA and 14-day-old scat DNA to a blood DNA template, to test accuracy of scat genotyping. We find that DNA from fresher scat results in fewer loci with missing information than DNA from older scat; however, 14-day-old scat can still provide useful genetic information, depending on the research question. We also find that a subset of 209 conserved loci can accurately identify individual koalas, even from older scat samples. In addition, we find that DNA sequences identified from scat samples through the DArTseq™ process can provide genetic identification of koala diet species, bacterial and viral pathogens, and parasitic organisms.

10.
Am J Phys Anthropol ; 164(1): 3-10, 2017 09.
Article in English | MEDLINE | ID: mdl-28661006

ABSTRACT

OBJECTIVES: Demographic crashes due to emerging diseases can contribute to population fragmentation and increase extinction risk of small populations. Ebola outbreaks in 2002-2004 are suspected to have caused a decline of more than 80% in some Western lowland gorilla (Gorilla gorilla gorilla) populations. We investigated whether demographic indicators of this event allowed for the detection of spatial fragmentation in gorilla populations. MATERIALS AND METHODS: We collected demographic data from two neighbouring populations: the Lokoué population, suspected to have been affected by an Ebola outbreak (followed from 2001 to 2014), and the Romani population, of unknown demographic status before Ebola outbreaks (followed from 2005 to 2014). RESULTS: Ten years after the outbreak, the Lokoué population is slowly recovering and the short-term demographic indicators of a population crash were no longer detectable. The Lokoué population has not experienced any additional demographic perturbation over the past decade. The Romani population did not show any of the demographic indicators of a population crash over the past decade. Its demographic structure remained similar to that of unaffected populations. DISCUSSION: Our results highlighted that the Ebola disease could contribute to fragmentation of gorilla populations due to the spatially heterogeneous impact of its outbreaks. The demographic structure of populations (i.e., age-sex and group structure) can be useful indicators of a possible occurrence of recent Ebola outbreaks in populations without known history, and may be more broadly used in other emerging disease/species systems. Longitudinal data are critical to our understanding of the impact of emerging diseases on wild populations and their conservation.


Subject(s)
Disease Outbreaks/statistics & numerical data , Disease Outbreaks/veterinary , Gorilla gorilla/virology , Hemorrhagic Fever, Ebola/epidemiology , Hemorrhagic Fever, Ebola/veterinary , Animals , Congo/epidemiology , Female , Male , Population Dynamics/statistics & numerical data
12.
Sci Rep ; 5: 8349, 2015 Feb 10.
Article in English | MEDLINE | ID: mdl-25666691

ABSTRACT

Accurate data on presence/absence and spatial distribution for fauna species is key to their conservation. Collecting such data, however, can be time consuming, laborious and costly, in particular for fauna species characterised by low densities, large home ranges, cryptic or elusive behaviour. For such species, including koalas (Phascolarctos cinereus), indicators of species presence can be a useful shortcut: faecal pellets (scats), for instance, are widely used. Scat surveys are not without their difficulties and often contain a high false negative rate. We used experimental and field-based trials to investigate the accuracy and efficiency of the first dog specifically trained for koala scats. The detection dog consistently out-performed human-only teams. Off-leash, the dog detection rate was 100%. The dog was also 19 times more efficient than current scat survey methods and 153% more accurate (the dog found koala scats where the human-only team did not). This clearly demonstrates that the use of detection dogs decreases false negatives and survey time, thus allowing for a significant improvement in the quality and quantity of data collection. Given these unequivocal results, we argue that to improve koala conservation, detection dog surveys for koala scats could in the future replace human-only teams.


Subject(s)
Conservation of Natural Resources , Dogs/physiology , Environmental Monitoring/methods , Feces , Phascolarctidae , Animals , Humans
13.
J Anim Ecol ; 84(1): 166-76, 2015 Jan.
Article in English | MEDLINE | ID: mdl-24995485

ABSTRACT

Emerging infectious diseases can induce rapid changes in population dynamics and threaten population persistence. In socially structured populations, the transfers of individuals between social units, for example, from breeding groups to non-breeding groups, shape population dynamics. We suggest that diseases may affect these crucial transfers. We aimed to determine how disturbance by an emerging disease affects demographic rates of gorillas, especially transfer rates within populations and immigration rates into populations. We compared social dynamics and key demographic parameters in a gorilla population affected by Ebola using a long-term observation data set including pre-, during and post-outbreak periods. We also studied a population of undetermined epidemiological status in order to assess whether this population was affected by the disease. We developed a multistate model that can handle transition between social units while optimizing the number of states. During the Ebola outbreak, social dynamics displayed increased transfers from a breeding to a non-breeding status for both males and females. Six years after the outbreak, demographic and most of social dynamics parameters had returned to their initial rates, suggesting a certain resilience in the response to disruption. The formation of breeding groups increased just after Ebola, indicating that environmental conditions were still attractive. However, population recovery was likely delayed because compensatory immigration was probably impeded by the potential impact of Ebola in the surrounding areas. The population of undetermined epidemiological status behaved similarly to the other population before Ebola. Our results highlight the need to integrate social dynamics in host-population demographic models to better understand the role of social structure in the sensitivity and the response to disease disturbances.


Subject(s)
Ape Diseases/virology , Gorilla gorilla , Hemorrhagic Fever, Ebola/virology , Models, Biological , Social Behavior , Animals , Congo , Female , Male , Population Dynamics
14.
PLoS One ; 8(11): e80469, 2013.
Article in English | MEDLINE | ID: mdl-24282544

ABSTRACT

With progressively increasing anthropogenic habitat disturbances, restoration of impacted landscapes is becoming a critical element of biodiversity conservation. Evaluation of success in restoration ecology rarely includes faunal components, usually only encompassing abiotic and floral components of the ecosystems. Even when fauna is explicitly included, it is usually only species presence/absence criteria that are considered. If restoration is to have a positive outcome, however, populations in restored habitats should exhibit comparable survival and reproductive rates to populations found in undisturbed surroundings. If a species recolonises restored areas but later experiences decreased fitness, restored areas could become ecological sinks or traps. We investigated this possibility in a case study of koalas Phascolarctos cinereus occupying rehabilitated mining areas on North Stradbroke Island, Australia. Our holistic approach compared rehabilitated and undisturbed areas on the basis of their vegetation characteristics, of koalas' body condition, roosting trees, diet, as well as predator index. Koalas using rehabilitated areas appeared to be able to access an adequate supply of roosting and fodder trees, were in good condition and had high reproductive output. We did not find any significant differences in predator density between rehabilitated areas and undisturbed surroundings. The results presented in this study showed there was no evidence that the post-mining rehabilitated areas constitute ecological sinks or traps. However, to reach a definitive conclusion as to whether areas rehabilitated post-mining provide at least equivalent habitat to undisturbed locations, additional research could be undertaken to assess foliar nutrient/water/toxin differences and predation risk in rehabilitated areas compared with undisturbed areas. More generally, the evaluation of whether restoration successfully produces a functional ecological community should include criteria on the fitness of faunal populations reoccupying such sites, so as to ensure functioning ecosystems, rather than ecological sinks or traps, are the outcome.


Subject(s)
Conservation of Natural Resources , Ecosystem , Mining , Phascolarctidae/physiology , Animals , Australia , Biodiversity , Body Constitution , Feeding Behavior , Population Dynamics , Reproduction
15.
PLoS One ; 7(5): e37106, 2012.
Article in English | MEDLINE | ID: mdl-22649511

ABSTRACT

Investigating the recovery capacity of wildlife populations following demographic crashes is of great interest to ecologists and conservationists. Opportunities to study these aspects are rare due to the difficulty of monitoring populations both before and after a demographic crash. Ebola outbreaks in central Africa have killed up to 95% of the individuals in affected western lowland gorilla (Gorilla gorilla gorilla) populations. Assessing whether and how fast affected populations recover is essential for the conservation of this critically endangered taxon. The gorilla population visiting Lokoué forest clearing, Odzala-Kokoua National Park, Republic of the Congo, has been monitored before, two years after and six years after Ebola affected it in 2004. This allowed us to describe Ebola's short-term and long-term impacts on the structure of the population. The size of the population, which included around 380 gorillas before the Ebola outbreak, dropped to less than 40 individuals after the outbreak. It then remained stable for six years after the outbreak. However, the demographic structure of this small population has significantly changed. Although several solitary males have disappeared, the immigration of adult females, the formation of new breeding groups, and several birth events suggest that the population is showing potential to recover. During the outbreak, surviving adult and subadult females joined old solitary silverbacks. Those females were subsequently observed joining young silverbacks, forming new breeding groups where they later gave birth. Interestingly, some females were observed joining silverbacks that were unlikely to have sired their infant, but no infanticide was observed. The consequences of the Ebola outbreak on the population structure were different two years and six years after the outbreak. Therefore, our results could be used as demographic indicators to detect and date outbreaks that have happened in other, non-monitored gorilla populations.


Subject(s)
Ape Diseases/epidemiology , Ape Diseases/virology , Disease Outbreaks/veterinary , Gorilla gorilla , Hemorrhagic Fever, Ebola/veterinary , Age Factors , Animals , Congo , Demography , Female , Hemorrhagic Fever, Ebola/epidemiology , Linear Models , Longitudinal Studies , Male , Observation , Population Dynamics , Sex Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...