Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
Sci Total Environ ; 795: 148743, 2021 Nov 15.
Article in English | MEDLINE | ID: mdl-34328936

ABSTRACT

This study presents the findings from several field campaigns carried out in Lake Idro (Northern Italy), a deep (124 m) meromictic-subalpine lake, whose water column is subdivided in a mixolimnion (~0-40 m) and a monimolimnion (~40-124 m). Hydrochemical data highlight two main peculiarities characterizing the Lake Idro meromixis: a) presence of a high manganese/iron ratio (up to 20 mol/mol), b) absence of a clear chemocline between the two main layers. The high manganese content contributed to the formation of a stable manganese dominated deep turbid stratum (40-65 m), enveloping the redoxcline (~45-55 m) in the upper monimolimnion. The presence of this turbid stratum in Lake Idro is described for the first time in this study. The paper examines the distribution of dissolved and particulate forms of transition metals (Mn and Fe), alkaline earth metals (Ca and Mg), and other macro-constituents or nutrients (S, P, NO3-N, NH4-N), discussing their behavior over the redoxcline, where the main transition processes occur. Field measurements and theoretical considerations suggest that the deep turbid stratum is formed by a complex mixture of manganese and iron compounds with a prevalence of Mn(II)/Mn(III) in different forms including dissolved, colloidal, and fine particles, that give to the turbid stratum a white-pink opalescent coloration. The bacteria populations show a clear stratification with the upper aerobic layer dominated by the heterotrophic Flavobacterium sp., the turbid stratum hosting a specific microbiological pool, dominated by Caldimonas sp., and the deeper anaerobic layer dominated by the sulfur-oxidizing and denitrifier Sulfuricurvum sp. The occurrence in August 2010 of an anomalous lake surface coloration lasting about four weeks and developing from milky white-green to red-brown suggests that the upper zone of the turbid stratum could be eroded during intense weather-hydrological conditions with the final red-brown coloration resulting from the oxidation of Mn(II)/Mn(III) to Mn(IV) compounds.


Subject(s)
Lakes , Manganese , Bacteria , Oxidation-Reduction , Sulfur
2.
ChemSusChem ; 14(11): 2267, 2021 Jun 08.
Article in English | MEDLINE | ID: mdl-34002490

ABSTRACT

Invited for this month's cover is the collaborative work among Univ. of Milano-Bicocca, Ricerca sul Sistema Energetico S.p.A., Univ. degli Studi di Milano, Univ. of California Irvine, Univ. of New Mexico, CNRS Toulouse. Technische Univ. Braunschweig, Aquacycl LLC, J. Craig Venter Institute, Helmholtz-Centre for Environmental Research. The image shows a sketch of a microbial fuel cell and a target indicating the need of developing common standards for the field of microbial electrochemical technologies. The Full Paper itself is available at 10.1002/cssc.202100294.


Subject(s)
Bioelectric Energy Sources/microbiology , Electrochemical Techniques/methods , Laboratories , Research
3.
ChemSusChem ; 14(11): 2313-2330, 2021 Jun 08.
Article in English | MEDLINE | ID: mdl-33755321

ABSTRACT

A cross-laboratory study on microbial fuel cells (MFC) which involved different institutions around the world is presented. The study aims to assess the development of autochthone microbial pools enriched from domestic wastewater, cultivated in identical single-chamber MFCs, operated in the same way, thereby approaching the idea of developing common standards for MFCs. The MFCs are inoculated with domestic wastewater in different geographic locations. The acclimation stage and, consequently, the startup time are longer or shorter depending on the inoculum, but all MFCs reach similar maximum power outputs (55±22 µW cm-2 ) and COD removal efficiencies (87±9 %), despite the diversity of the bacterial communities. It is inferred that the MFC performance starts when the syntrophic interaction of fermentative and electrogenic bacteria stabilizes under anaerobic conditions at the anode. The generated power is mostly limited by electrolytic conductivity, electrode overpotentials, and an unbalanced external resistance. The enriched microbial consortia, although composed of different bacterial groups, share similar functions both on the anode and the cathode of the different MFCs, resulting in similar electrochemical output.


Subject(s)
Bioelectric Energy Sources/microbiology , Electrochemical Techniques/methods , Bacteria/metabolism , Carbonates/chemistry , Electricity , Geography , Wastewater/chemistry
4.
Data Brief ; 33: 106403, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33117864

ABSTRACT

Hyperthermophile bacteria were seldom investigated in bioelectrochemical systems although they allow more effective control of the inoculum in comparison with mesophilic bacteria. Biofilm formed in hyperthermophilic conditions (>60 °C) also rarely was documented (d'Ippolito et al., 2020; Belkin et al., 1986, Pysz et al., 2004). Scanning Electron Microscopy (SEM) micrographs documenting biofilms formed by the Hyperthermophile bacterium Thermotoga neapolitana on different solid materials (ceramic carrier, stainless steel mesh, carbon felt, carbon paper, expanse graphite, and carbon cloth) are shown in this report. Also, micrographs of the biofilm formed on electrodes of carbon cloth under a dynamic polarization oscillating around ±1 V (±0.8 V and ±1.2 V) are reported. Two procedures of sample preparation for SEM analyses are described and used: 1) a fast drying of samples, which is enough to underline the biofilm shape that covers solids, and 2) a chemical treating of the samples with glutaraldehyde, which better preserves the shape of bacterial cell components in the biofilm, although this treatment might cause the detachment of pieces of the biofilm. The different effect of potentiostatic and potentiodynamic polarizations on the glucose metabolism of T. neapolitana has been screened and discussed in the associated article [1]. Here, data of Optical Densities (O.D.) of culture media are provided, indicating the presence or absence of bacteria growth in the bulk of the media. Data have been collected every 24 h from the differently polarized bioreactors. The electrodes set-up of small bioreactors is also illustrated. Chemical data, optical data and SEM images, accordingly, document a retard in the glucose fermentation process due to a settlement of T. Neapolitana in a stationary phase. The polarization of electrodes can modify the stationary condition, inducing a possible change of the bacteria metabolism.

5.
Bioresour Technol ; 277: 117-127, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30660962

ABSTRACT

The aim of this work were to study terracotta-based porous air-water separators (4 mm thickness) in microbial recycling cells (MRCs) fed with cow manure (CM), swine manure (SM) and dairy wastewater (DW). Over 125 days, besides the removal of 60-90% of soluble-COD, considerable fractions of the main macronutrients (C, N, P, K, Fe, Mn, Ca, Mg) were removed from the wastewater and deposited on the terracotta separators as both inorganic salts and biomass deposits. Water evaporation at air-water interface as well as the high cathodic pH (10-12), induced by oxygen reduction to OH-, were the predominant factors leading to precipitation. The separators were saturated of up to 10 g per kg of terracotta of the main macronutrients, with negligible concentrations of the main inorganic contaminants. These materials could be directly reused as nutrients-enriched solid conditioners for agricultural soils.


Subject(s)
Nutrients , Wastewater/chemistry , Animals , Biomass , Cattle , Electrodes , Manure , Recycling , Swine
6.
Sci Total Environ ; 649: 1349-1361, 2019 Feb 01.
Article in English | MEDLINE | ID: mdl-30308905

ABSTRACT

This article reviews the mechanisms that drive nutrients and carbon sequestration from wastewaters by microbial electrochemical technologies (METs). In this framework, a new generation of METs is also presented (to be called microbial recycling cells, MRCs), based on 100%-recyclable materials (biomass-derived char coal, clay, terracotta, paper, ligno-cellulosic plant materials, etc.), which can act as bio-electrodes, separators and structural frames. In traditional METs architectures (based on technological materials such as carbon cloths, plastic panels, membranes, binders), inorganic salts precipitation and adsorption, as well as biofouling due to organic-matter deposition, are considered as main drawbacks that clog and hinder the systems over relatively short periods. In MRCs, these mechanisms should be maximized, instead of being avoided. In this perspective, both inorganic and organic forms of the main nutrients are sequestered from wastewater and deposited on METs modules. Once the systems become saturated, they can entirely be recycled as agricultural soil conditioners or as base for organic-mineral fertilizers.


Subject(s)
Biocompatible Materials , Carbon/analysis , Electrochemical Techniques/methods , Fertilizers/analysis , Recycling/methods , Waste Disposal, Fluid/methods , Wastewater/analysis , Agriculture/methods , Soil/chemistry , Waste Disposal, Fluid/instrumentation
7.
J Hazard Mater ; 341: 120-127, 2018 Jan 05.
Article in English | MEDLINE | ID: mdl-28772251

ABSTRACT

BTEX compounds (Benzene, Toluene, Ethylbenzene and Xylenes) are toxic hydrocarbons that can be found in groundwater due to accidental spills. Bioelectrochemical systems (BES) are an innovative technology to stimulate the anaerobic degradation of hydrocarbons. In this work, single chamber BESs were used to assess the degradation of a BTEX mixture at different applied voltages (0.8V, 1.0V, 1.2V) between the electrodes. Hydrocarbon degradation was linked to current production and to sulfate reduction, at all the tested potentials. The highest current densities (about 200mA/m2 with a maximum peak at 480mA/m2) were observed when 0.8V were applied. The application of an external voltage increased the removal of toluene, m-xylene and p-xylene. The highest removal rate constants at 0.8V were: 0.4±0.1days-1, 0.34±0.09days-1 and 0.16±0.02days-1, respectively. At the end of the experiment, the microbial communities were characterized by high throughput sequencing of the 16S rRNA gene. Microorganisms belonging to the families Desulfobulbaceae, Desulfuromonadaceae and Geobacteraceae were enriched on the anodes suggesting that both direct electron transfer and sulfur cycling occurred. The cathodic communities were dominated by the family Desulfomicrobiaceae that may be involved in hydrogen production.


Subject(s)
Bacteria/metabolism , Benzene Derivatives , Benzene , Toluene , Water Pollutants, Chemical , Xylenes , Bacteria/genetics , Benzene/chemistry , Benzene/metabolism , Benzene Derivatives/chemistry , Benzene Derivatives/metabolism , Biodegradation, Environmental , Electrochemical Techniques , Electrodes/microbiology , Oxidation-Reduction , RNA, Ribosomal, 16S/genetics , Toluene/chemistry , Toluene/metabolism , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/metabolism , Xylenes/chemistry , Xylenes/metabolism
8.
Waste Manag ; 71: 785-791, 2018 Jan.
Article in English | MEDLINE | ID: mdl-28666632

ABSTRACT

In anaerobic digesters (AD), volatile fatty acids (VFAs) concentration is a critical operative parameter, which is usually manually monitored to prevent inhibition of microbial consortia. An on-line VFAs monitoring system as early-warning for increasing concentrations would be of great help for operators. Here, air-cathode membraneless microbial fuel cells (MFCs) were investigated as potential biosensors, whose electrical signal instantaneously moves from its steady value with the accumulation of VFAs in the anodic solution. MFCs were operated equipping four lab-scale ADs with carbon-based electrodes. Reactors were filled with the digestate from a full-scale AD and fed in batch with four kinds of feedstock (cheese whey, kitchen waste, citrus pulp and fishery waste). The MFC signal initially increased in parallel to VFAs production, then tended to a steady value for VFAs concentrations above 1000mgAcL-1. Peak concentrations of tVFAs (2500-4500mgAcL-1) and MFCs potentials were negatively correlated (r=0.916, p<0.05), regardless of the type of substrate. Inhibition of the MFC system occurred when VFAs increased fast above 4000mgAcL-1. Polarization curves of electrodes stressed that electroactive bacteria on bioanodes were strongly subjected to inhibition. The inhibition of electroactivity on bioanode trended like typical shock-sensors, opening to direct application as early-warning monitoring system in full-scale ADs.


Subject(s)
Bioelectric Energy Sources , Bioreactors , Fatty Acids, Volatile/metabolism , Anaerobiosis , Carbon , Electricity
9.
Bioelectrochemistry ; 120: 18-26, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29149665

ABSTRACT

Recently, terracotta has attracted interest as low-cost and biocompatible material to build separators in microbial fuel cells (MFCs). However, the influence of a non-conductive material like terracotta on electroactive microbiological communities remains substantially unexplored. This study aims at describing the microbial pools developed from two different seed inocula (bovine and swine sewage) in terracotta-based air-breathing MFC. A statistical approach on microbiological data confirmed different community enrichment in the MFCs, depending mainly on the inoculum. Terracotta separators impeded the growth of electroactive communities in contact with cathodes (biocathodes), while a thick biofilm was observed on the surface (anolyte-side) of the terracotta separator. Terracotta-free MFCs, set as control experiments, showed a well-developed biocathode, Biocathode-MFCs resulted in 4 to 6-fold higher power densities. All biofilms were analyzed by high-throughput Illumina sequencing applied to 16S rRNA gene. The results showed more abundant (3- to 5-fold) electroactive genera (mainly Geobacter, Pseudomonas, Desulfuromonas and Clostridia MBA03) in terracotta-free biocathodes. Nevertheless, terracotta separators induced only slight changes in anodic microbial communities.


Subject(s)
Bacteria/isolation & purification , Bioelectric Energy Sources/microbiology , Animals , Bacteria/genetics , Cattle , Electricity , Electrodes , RNA, Ribosomal, 16S/genetics , Sewage/microbiology , Swine
10.
Bioelectrochemistry ; 116: 39-51, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28453974

ABSTRACT

Dissolved oxygen (DO) at cathodic interface is a critical factor influencing microbial fuel cells (MFC) performance. In this work, three MFCs were operated with cathode under different DO conditions: i) air-breathing (A-MFC); ii) water-submerged (W-MFC) and iii) assisted by photosynthetic microorganisms (P-MFC). A plateau of maximum current was reached at 1.06±0.03mA, 1.48±0.06mA and 1.66±0.04mA, increasing respectively for W-MFC, P-MFC and A-MFC. Electrochemical and microbiological tools (Illumina sequencing, confocal microscopy and biofilm cryosectioning) were used to explore anodic and cathodic biofilm in each MFC type. In all cases, biocathodes improved oxygen reduction reaction (ORR) as compared to abiotic condition and A-MFC was the best performing system. Photosynthetic cultures in the cathodic chamber supplied high DO level, up to 16mgO2L-1, which sustained aerobic microbial community in P-MFC biocathode. Halomonas, Pseudomonas and other microaerophilic genera reached >50% of the total OTUs. The presence of sulfur reducing bacteria (Desulfuromonas) and purple non-sulfur bacteria in A-MFC biocathode suggested that the recirculation of sulfur compounds could shuttle electrons to sustain the reduction of oxygen as final electron acceptor. The low DO concentration limited the cathode in W-MFC. A model of two different possible microbial mechanisms is proposed which can drive predominantly cathodic ORR.


Subject(s)
Bioelectric Energy Sources/microbiology , Oxygen/chemistry , Electrochemistry , Oxidation-Reduction
11.
Bioresour Technol ; 237: 240-248, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28341382

ABSTRACT

Spirulina was cultivated in cathodic compartments of photo-microbial fuel cells (P-MFC). Anodic compartments were fed with swine-farming wastewater, enriched with sodium acetate (2.34gCODL-1). Photosynthetic oxygen generation rates were sufficient to sustain cathodic oxygen reduction, significantly improving P-MFC electrochemical performances, as compared to water-cathode control experiments. Power densities (0.8-1Wm-2) approached those of air-cathode MFCs, run as control. COD was efficiently removed and only negligible fractions leaked to the cathodic chamber. Spirulina growth rates were comparable to those of control (MFC-free) cultures, while pH was significantly (0.5-1unit) higher in P-MFCs, due to cathodic reactions. Alkaliphilic photosynthetic microorganisms like Spirulina might take advantage of these selective conditions. Electro-migration along with diffusion to the cathodic compartment concurred for the recovery of most nutrients. Only P and Mg were retained in the anodic chamber. A deeper look into electro-osmotic mechanisms should be addressed in future studies.


Subject(s)
Bioelectric Energy Sources , Photosynthesis , Wastewater , Animals , Electrodes , Oxygen , Swine
12.
Biointerphases ; 10(3): 031009, 2015 Sep 10.
Article in English | MEDLINE | ID: mdl-26357848

ABSTRACT

Power output limitation is one of the main concerns that need to be addressed for full-scale applications of the microbial fuel cell technology. Fouling and biofilm growth on the cathode of single chamber microbial fuel cells (SCMFC) affects their performance in long-term operation with wastewater. In this study, the authors report the power output and cathode polarization curves of a membraneless SCMFC, fed with raw primary wastewater and sodium acetate for over 6 months. At the end of the experiment, the whole cathode surface is analyzed through X-ray microcomputed tomography (microCT), scanning electron microscopy, and energy-dispersive X-ray spectroscopy (EDX) to characterize the fouling layer and the biofilm. EDX shows the distribution of Ca, Na, K, P, S, and other elements on the two faces of the cathode. Na-carbonates and Ca-carbonates are predominant on the air (outer) side and the water (inner) side, respectively. The three-dimensional reconstruction by X-ray microCT shows biofilm spots unevenly distributed above the Ca-carbonate layer on the inner (water) side of the cathode. These results indicate that carbonates layer, rather than biofilm, might lower the oxygen reduction reaction rate at the cathode during long-term SCMFC operation.


Subject(s)
Bioelectric Energy Sources , Biofilms/growth & development , Biofouling , Carbonates/analysis , Electrodes/microbiology , Electricity , Imaging, Three-Dimensional , Microscopy, Electron, Scanning , Oxidation-Reduction , Spectrometry, X-Ray Emission , Wastewater/chemistry , Wastewater/microbiology , X-Ray Microtomography
13.
Water Res ; 86: 108-15, 2015 Dec 01.
Article in English | MEDLINE | ID: mdl-26343045

ABSTRACT

In Microbial Fuel Cells (MFCs), the recovery of water can be achieved with the help of both active (electro-osmosis), and passive (osmosis) transport pathways of electrolyte through the semi-permeable selective separator. The electrical current-dependent transport, results in cations and electro-osmotically dragged water molecules reaching the cathode. The present study reports on the production of catholyte on the surface of the cathode, which was achieved as a direct result of electricity generation using MFCs fed with wastewater, and employing Pt-free carbon based cathode electrodes. The highest pH levels (>13) of produced liquid were achieved by the MFCs with the activated carbon cathodes producing the highest power (309 µW). Caustic catholyte formation is presented in the context of beneficial cathode flooding and transport mechanisms, in an attempt to understand the effects of active and passive diffusion. Active transport was dominant under closed circuit conditions and showed a linear correlation with power performance, whereas osmotic (passive) transport was governing the passive flux of liquid in open circuit conditions. Caustic catholyte was mineralised to a mixture of carbonate and bicarbonate salts (trona) thus demonstrating an active carbon capture mechanism as a result of the MFC energy-generating performance. Carbon capture would be valuable for establishing a carbon negative economy and environmental sustainability of the wastewater treatment process.


Subject(s)
Bioelectric Energy Sources , Carbon/chemistry , Electrodes , Osmosis , Waste Disposal, Fluid/methods , Bicarbonates/chemistry , Electrolytes , Wastewater/chemistry , Water/chemistry
14.
Bioelectrochemistry ; 106(Pt A): 240-7, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26045153

ABSTRACT

Influence of PTFE in the external Gas Diffusion Layer (GDL) of open-air cathodes applied to membraneless microbial fuel cells (MFCs) is investigated in this work. Electrochemical measurements on cathodes with different PTFE contents (200%, 100%, 80% and 60%) were carried out to characterize cathodic oxygen reduction reaction, to study the reaction kinetics. It is demonstrated that ORR is not under diffusion-limiting conditions in the tested systems. Based on cyclic voltammetry, an increase of the cathodic electrochemical active area took place with the decrease of PTFE content. This was not directly related to MFC productivity, but to the cathode wettability and the biocathode development. Low electrodic interface resistances (from 1 to 1.5 Ω at the start, to near 0.1 Ω at day 61) indicated a negligible ohmic drop. A decrease of the Tafel slopes from 120 to 80 mV during productive periods of MFCs followed the biological activity in the whole MFC system. A high PTFE content in the cathode showed a detrimental effect on the MFC productivity, acting as an inhibitor of ORR electrocatalysis in the triple contact zone.


Subject(s)
Bioelectric Energy Sources , Oxygen/chemistry , Polytetrafluoroethylene/chemistry , Catalysis , Electric Capacitance , Electric Conductivity , Electrochemistry , Oxidation-Reduction , Surface Properties
15.
N Biotechnol ; 32(1): 79-84, 2015 Jan 25.
Article in English | MEDLINE | ID: mdl-25291711

ABSTRACT

Microbial fuel cells (MFCs) are a rapidly growing technology for energy production from wastewater and biomasses. In a MFC, a microbial biofilm oxidizes organic matter and transfers electrons from reduced compounds to an anode as the electron acceptor by extracellular electron transfer (EET). The aim of this work was to characterize the microbial communities operating in a Single Chamber Microbial Fuel Cell (SCMFC) fed with acetate and inoculated with a biogas digestate in order to gain more insight into anodic and cathodic EET. Taxonomic characterization of the communities was carried out by Illumina sequencing of a fragment of the 16S rRNA gene. Microorganisms belonging to Geovibrio genus and purple non-sulfur (PNS) bacteria were found to be dominant in the anodic biofilm. The alkaliphilic genus Nitrincola and anaerobic microorganisms belonging to Porphyromonadaceae family were the most abundant bacteria in the cathodic biofilm.


Subject(s)
Bacteria/growth & development , Bioelectric Energy Sources/microbiology , Bacteria/classification , Bacteria/genetics , Base Sequence , Bayes Theorem , Electricity , Electrodes
16.
Bioresour Technol ; 163: 54-63, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24787317

ABSTRACT

Activated carbon (AC) is employed as a cost-effective catalyst for cathodic oxygen reduction in microbial fuel cells (MFC). The fabrication protocols of AC-based cathodes are conducted at different applied pressures (175-3500 psi) and treatment temperatures (25-343°C). The effects of those parameters along with changes in the surface morphology and chemistry on the cathode performances are comprehensively examined. The cathodes are tested in a three-electrode setup and explored in single chamber membraneless MFCs (SCMFCs). The results show that the best performance of the AC-based cathode is achieved when a pressure of 1400 psi is applied followed by heat treatment of 150-200°C for 1h. The influence of the applied pressure and the temperature of the heat treatment on the electrodes and SCMFCs is demonstrated as the result of the variation in the transfer resistance, the surface morphology and surface chemistry of the AC-based cathodes tested.


Subject(s)
Bioelectric Energy Sources , Carbon/chemistry , Electrodes , Photoelectron Spectroscopy , Porosity , Pressure , Principal Component Analysis , Temperature
17.
Bioelectrochemistry ; 97: 2-6, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24411305

ABSTRACT

The present paper reports the on-line monitoring of corrosion behavior of the CuNi 70:30 and Al brass alloys exposed to seawater and complementary offline microbiological analyses. An electrochemical equipment with sensors specifically set for industrial application and suitable to estimate the corrosion (by linear polarization resistance technique), the biofilm growth (by the BIOX electrochemical probe), the chlorination treatment and other physical-chemical parameters of the water has been used for the on-line monitoring. In order to identify and better characterize the bacteria community present on copper alloys, tube samples were collected after a long period (1year) and short period (2days) of exposition to treated natural seawater (TNSW) and natural seawater (NSW). From the collected samples, molecular techniques such as DNA extraction, polymerase chain reaction (PCR), denaturing gradient gel electrophoresis (DGGE) and identification by sequencing were performed to better characterize and identify the microbial biodiversity present in the samples. The monitoring data confirmed the significant role played by biofouling deposition against the passivity of these Cu alloys in seawater and the positive influence of antifouling treatments based on low level dosages. Molecular analysis indicated biodiversity with the presence of Marinobacter, Alteromonas and Pseudomonas species.


Subject(s)
Alloys/chemistry , Aluminum/chemistry , Biofilms/growth & development , Copper/chemistry , Corrosion , Nickel/chemistry , Seawater/microbiology , Alteromonas/physiology , Electrophoresis , Halogenation , Manufactured Materials/analysis , Manufactured Materials/microbiology , Marinobacter/physiology , Pseudomonas/physiology , Seawater/analysis
18.
Bioelectrochemistry ; 97: 34-42, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24177137

ABSTRACT

Copper alloys often used in cooling circuits of industrial plants can be affected by biocorrosion induced by biofilm formation. The objective of this work was to study the influence of protein adsorption, which is the first step in biofilm formation, on the electrochemical behavior of 70Cu-30Ni (wt.%) alloy in static artificial seawater and on the chemical composition of oxide layers. For that purpose, electrochemical measurements performed after 1h of immersion were combined to surface analyses. A model is proposed to analyze impedance data. In the presence of bovine serum albumin (BSA, model protein), the anodic charge transfer resistance deduced from EIS data at Ecorr is slightly higher, corresponding to lower corrosion current. Without BSA, two oxidized layers are shown by XPS and ToF-SIMS: an outer layer mainly composed of copper oxide (Cu2O redeposited layer) and an inner layer mainly composed of oxidized nickel, with a global thickness of ~30nm. The presence of BSA leads to a mixed oxide layer (CuO, Cu2O, Ni(OH)2) with a lower thickness (~10nm). Thus, the protein induces a decrease of the dissolution rate at Ecorr and hence a decrease of the amount of redeposited Cu2O and of the oxide layer thickness.


Subject(s)
Copper/chemistry , Corrosion , Nickel/chemistry , Seawater/chemistry , Serum Albumin, Bovine/isolation & purification , Adsorption , Animals , Cattle , Electric Impedance , Electrochemical Techniques , Oxidation-Reduction , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...