Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Biochim Biophys Acta ; 1807(12): 1634-46, 2011 Dec.
Article in English | MEDLINE | ID: mdl-21945502

ABSTRACT

Bacterial physiological responses integrate energy-coupling processes at the membrane level with metabolic energy demand. The regulatory design behind these responses remains largely unexplored. Propionigenium modestum is an adequate organism to study these responses because it presents the simplest scheme known integrating membrane potential generation and metabolic ATP consumption. A hypothetical sodium leak is added to the scheme as the sole regulatory site. Allosteric regulation is assumed to be absent. Information of the rate equations is not available. However, relevant features of the patterns of responses may be obtained using Metabolic Control Analysis (MCA) and Metabolic Control Design (MCD). With these tools, we show that membrane potential disturbances can be compensated by adjusting the leak flux, without significant perturbations of ATP consumption. Perturbations of membrane potential by ATP demand are inevitable and also require compensatory changes in the leak. Numerical simulations were performed with a kinetic model exhibiting the responses for small changes obtained with MCA and MCD. A modest leak (10% of input) was assumed for the reference state. We found that disturbances in membrane potential and ATP consumption, produced by environmental perturbations of the cation concentration, may be reverted to the reference state adjusting the leak. Leak changes can also compensate for undesirable effects on membrane potential produced by changes in nutrient availability or ATP demand, in a wide range of values. The system is highly robust to parameter fluctuations. The regulatory role of energy dissipating processes and the trade-off between energetic efficiency and regulatory capacity are discussed.


Subject(s)
Adenosine Triphosphate/metabolism , Energy Metabolism/physiology , Membrane Potentials/physiology , Models, Biological , Fusobacteria/cytology , Fusobacteria/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...