Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Medicina (Kaunas) ; 58(7)2022 Jun 29.
Article in English | MEDLINE | ID: mdl-35888586

ABSTRACT

Background and Objectives: In dentistry, the assessment of the histomorphometric features of periodontal (PD) and peri-implant (PI) lesions is important to evaluate their underlying pathogenic mechanism. The present study aimed to compare manual and digital methods of analysis in the evaluation of the inflammatory biomarkers in PI and PD lesions. Materials and Methods: PD and PI inflamed soft tissues were excised and processed for histological and immunohistochemical analyses for CD3+, CD4+, CD8+, CD15+, CD20+, CD68+, and CD138+. The obtained slides were acquired using a digital scanner. For each marker, 4 pictures per sample were extracted and the area fraction of the stained tissue was computed both manually using a 594-point counting grid (MC) and digitally using a dedicated image analysis software (DC). To assess the concordance between MC and DC, two blinded observers analysed a total of 200 pictures either with good quality of staining or with non-specific background noise. The inter and intraobserver concordance was evaluated using the intraclass coefficient and the agreement between MC and DC was assessed using the Bland-Altman plot. The time spent analysing each picture using the two methodologies by both observers was recorded. Further, the amount of each marker was compared between PI and PD with both methodologies. Results: The inter- and intraobserver concordance was excellent, except for images with background noise analysed using DC. MC and DC showed a satisfying concordance. DC was performed in half the time compared to MC. The morphological analysis showed a larger inflammatory infiltrate in PI than PD lesions. The comparison between PI and PD showed differences for CD68+ and CD138+ expression. Conclusions: DC could be used as a reliable and time-saving procedure for the immunohistochemical analysis of PD and PI soft tissues. When non-specific background noise is present, the experience of the pathologist may be still required.


Subject(s)
Peri-Implantitis , Periodontitis , Antigens, CD20 , Biomarkers/analysis , Humans , Peri-Implantitis/pathology , Proof of Concept Study
2.
Medicina (Kaunas) ; 58(2)2022 Feb 18.
Article in English | MEDLINE | ID: mdl-35208638

ABSTRACT

Background and Objectives: Three-dimensional (3D) metallic trabecular structures made by additive manufacturing (AM) technologies promote new bone formation and osteointegration. Surface modifications by chemical treatments can improve the osteoconductive properties of metallic structures. An in vivo study in sheep was conducted to assess the bone response to randomized trabecular titanium structures that underwent a surface modification by chemical treatment compared to the bone response to the untreated specimens. Material and Methods: Sixteen specimens with a randomized trabecular titanium structure were implanted in the spongious bone of the distal femur and proximal tibia and the cortical bone of the tibial diaphysis of two sheep. Of them, eight implants had undergone a chemical treatment (treated) and were compared to eight implants with the same structure but native surfaces (native). The sheep were sacrificed at 6 weeks. Surface features of the lattice structures (native and treated) were analyzed using a 3D non-contact profilometer. Compression tests of 18 lattice cubes were performed to investigate the mechanical properties of the two structures. Excellent biocompatibility for the trabecular structures was demonstrated in vitro using a cell mouse fibroblast culture. Histomorphometric analysis was performed to evaluate bone implant contact and bone ingrowth. Results: A compression test of lattice cubic specimens revealed a comparable maximum compressive strength value between the two tested groups (5099 N for native surfaces; 5558 N for treated surfaces; p > 0.05). Compared to native surfaces, a homogenous formation of micropores was observed on the surface of most trabeculae that increased the surface roughness of the treated specimens (4.3 versus 3.2 µm). The cellular viability of cells seeded on three-dimensional structure surfaces increased over time compared to that on plastic surfaces. The histomorphometric data revealed a similar behavior and response in spongious and cortical bone formation. The percentage of the implant surface in direct contact with the regenerated bone matrix (BIC) was not significantly different between the two groups either in the spongious bone (BIC: 27% for treated specimens versus 30% for native samples) or in the cortical bone (BIC: 75% for treated specimens versus 77% for native samples). Conclusions: The results of this study reveal rapid osseointegration and excellent biocompatibility for the trabecular structure regardless of surface treatment using AM technologies. The application of implant surfaces can be optimized to achieve a strong press-fit and stability, overcoming the demand for additional chemical surface treatments.


Subject(s)
Osseointegration , Titanium , Animals , Bone Regeneration , Femur/surgery , Mice , Osseointegration/physiology , Sheep , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...