Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Magn Reson Med ; 92(2): 836-852, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38502108

ABSTRACT

PURPOSE: Arterial spin labeling (ASL) is a widely used contrast-free MRI method for assessing cerebral blood flow (CBF). Despite the generally adopted ASL acquisition guidelines, there is still wide variability in ASL analysis. We explored this variability through the ISMRM-OSIPI ASL-MRI Challenge, aiming to establish best practices for more reproducible ASL analysis. METHODS: Eight teams analyzed the challenge data, which included a high-resolution T1-weighted anatomical image and 10 pseudo-continuous ASL datasets simulated using a digital reference object to generate ground-truth CBF values in normal and pathological states. We compared the accuracy of CBF quantification from each team's analysis to the ground truth across all voxels and within predefined brain regions. Reproducibility of CBF across analysis pipelines was assessed using the intra-class correlation coefficient (ICC), limits of agreement (LOA), and replicability of generating similar CBF estimates from different processing approaches. RESULTS: Absolute errors in CBF estimates compared to ground-truth synthetic data ranged from 18.36 to 48.12 mL/100 g/min. Realistic motion incorporated into three datasets produced the largest absolute error and variability between teams, with the least agreement (ICC and LOA) with ground-truth results. Fifty percent of the submissions were replicated, and one produced three times larger CBF errors (46.59 mL/100 g/min) compared to submitted results. CONCLUSIONS: Variability in CBF measurements, influenced by differences in image processing, especially to compensate for motion, highlights the significance of standardizing ASL analysis workflows. We provide a recommendation for ASL processing based on top-performing approaches as a step toward ASL standardization.


Subject(s)
Brain , Cerebrovascular Circulation , Image Processing, Computer-Assisted , Magnetic Resonance Imaging , Spin Labels , Humans , Cerebrovascular Circulation/physiology , Reproducibility of Results , Brain/diagnostic imaging , Brain/blood supply , Image Processing, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Perfusion Imaging/methods , Male , Female , Adult , Algorithms
2.
Clin Cancer Res ; 28(11): 2385-2396, 2022 06 01.
Article in English | MEDLINE | ID: mdl-35312755

ABSTRACT

PURPOSE: Despite optimal local therapy, tumor cell invasion into normal brain parenchyma frequently results in recurrence in patients with solid tumors. The aim of this study was to determine whether microvascular inflammation can be targeted to better delineate the tumor-brain interface through vascular cell adhesion molecule-1 (VCAM-1)-targeted MRI. EXPERIMENTAL DESIGN: Intracerebral xenograft rat models of MDA231Br-GFP (breast cancer) brain metastasis and U87MG (glioblastoma) were used to histologically examine the tumor-brain interface and to test the efficacy of VCAM-1-targeted MRI in detecting this region. Human biopsy samples of the brain metastasis and glioblastoma margins were examined for endothelial VCAM-1 expression. RESULTS: The interface between tumor and surrounding normal brain tissue exhibited elevated endothelial VCAM-1 expression and increased microvessel density. Tumor proliferation and stemness markers were also significantly upregulated at the tumor rim in the brain metastasis model. T2*-weighted MRI, following intravenous administration of VCAM-MPIO, highlighted the tumor-brain interface of both tumor models more extensively than gadolinium-DTPA-enhanced T1-weighted MRI. Sites of VCAM-MPIO binding, evident as hypointense signals on MR images, correlated spatially with endothelial VCAM-1 upregulation and bound VCAM-MPIO beads detected histologically. These findings were further validated in an orthotopic medulloblastoma model. Finally, the tumor-brain interface in human brain metastasis and glioblastoma samples was similarly characterized by microvascular inflammation, extending beyond the region detectable using conventional MRI. CONCLUSIONS: This work illustrates the potential of VCAM-1-targeted MRI for improved delineation of the tumor-brain interface in both primary and secondary brain tumors.


Subject(s)
Brain Neoplasms , Glioblastoma , Animals , Brain/diagnostic imaging , Brain/metabolism , Brain Neoplasms/metabolism , Disease Models, Animal , Glioblastoma/diagnostic imaging , Glioblastoma/metabolism , Humans , Inflammation/metabolism , Magnetic Resonance Imaging/methods , Rats , Vascular Cell Adhesion Molecule-1/metabolism
3.
Front Oncol ; 11: 648528, 2021.
Article in English | MEDLINE | ID: mdl-33869047

ABSTRACT

PURPOSE: Relative cerebral blood volume (rCBV) is the most widely used parameter derived from DSC perfusion MR imaging for predicting brain tumor aggressiveness. However, accurate rCBV estimation is challenging in enhancing glioma, because of contrast agent extravasation through a disrupted blood-brain barrier (BBB), and even for nonenhancing glioma with an intact BBB, due to an elevated steady-state contrast agent concentration in the vasculature after first passage. In this study a thorough investigation of the effects of two different leakage correction algorithms on rCBV estimation for enhancing and nonenhancing tumors was conducted. METHODS: Two datasets were used retrospectively in this study: 1. A publicly available TCIA dataset (49 patients with 35 enhancing and 14 nonenhancing glioma); 2. A dataset acquired clinically at Erasmus MC (EMC, Rotterdam, NL) (47 patients with 20 enhancing and 27 nonenhancing glial brain lesions). The leakage correction algorithms investigated in this study were: a unidirectional model-based algorithm with flux of contrast agent from the intra- to the extravascular extracellular space (EES); and a bidirectional model-based algorithm additionally including flow from EES to the intravascular space. RESULTS: In enhancing glioma, the estimated average contrast-enhanced tumor rCBV significantly (Bonferroni corrected Wilcoxon Signed Rank Test, p < 0.05) decreased across the patients when applying unidirectional and bidirectional correction: 4.00 ± 2.11 (uncorrected), 3.19 ± 1.65 (unidirectional), and 2.91 ± 1.55 (bidirectional) in TCIA dataset and 2.51 ± 1.3 (uncorrected), 1.72 ± 0.84 (unidirectional), and 1.59 ± 0.9 (bidirectional) in EMC dataset. In nonenhancing glioma, a significant but smaller difference in observed rCBV was found after application of both correction methods used in this study: 1.42 ± 0.60 (uncorrected), 1.28 ± 0.46 (unidirectional), and 1.24 ± 0.37 (bidirectional) in TCIA dataset and 0.91 ± 0.49 (uncorrected), 0.77 ± 0.37 (unidirectional), and 0.67 ± 0.34 (bidirectional) in EMC dataset. CONCLUSION: Both leakage correction algorithms were found to change rCBV estimation with BBB disruption in enhancing glioma, and to a lesser degree in nonenhancing glioma. Stronger effects were found for bidirectional leakage correction than for unidirectional leakage correction.

4.
Clin Cancer Res ; 27(9): 2459-2469, 2021 05 01.
Article in English | MEDLINE | ID: mdl-33597271

ABSTRACT

PURPOSE: Tumor hypoxia fuels an aggressive tumor phenotype and confers resistance to anticancer treatments. We conducted a clinical trial to determine whether the antimalarial drug atovaquone, a known mitochondrial inhibitor, reduces hypoxia in non-small cell lung cancer (NSCLC). PATIENTS AND METHODS: Patients with NSCLC scheduled for surgery were recruited sequentially into two cohorts: cohort 1 received oral atovaquone at the standard clinical dose of 750 mg twice daily, while cohort 2 did not. Primary imaging endpoint was change in tumor hypoxic volume (HV) measured by hypoxia PET-CT. Intercohort comparison of hypoxia gene expression signatures using RNA sequencing from resected tumors was performed. RESULTS: Thirty patients were evaluable for hypoxia PET-CT analysis, 15 per cohort. Median treatment duration was 12 days. Eleven (73.3%) atovaquone-treated patients had meaningful HV reduction, with median change -28% [95% confidence interval (CI), -58.2 to -4.4]. In contrast, median change in untreated patients was +15.5% (95% CI, -6.5 to 35.5). Linear regression estimated the expected mean HV was 55% (95% CI, 24%-74%) lower in cohort 1 compared with cohort 2 (P = 0.004), adjusting for cohort, tumor volume, and baseline HV. A key pharmacodynamics endpoint was reduction in hypoxia-regulated genes, which were significantly downregulated in atovaquone-treated tumors. Data from multiple additional measures of tumor hypoxia and perfusion are presented. No atovaquone-related adverse events were reported. CONCLUSIONS: This is the first clinical evidence that targeting tumor mitochondrial metabolism can reduce hypoxia and produce relevant antitumor effects at the mRNA level. Repurposing atovaquone for this purpose may improve treatment outcomes for NSCLC.


Subject(s)
Atovaquone/pharmacology , Gene Expression Regulation, Neoplastic , Mitochondria/drug effects , Mitochondria/metabolism , Oxidative Phosphorylation/drug effects , Tumor Hypoxia/drug effects , Tumor Hypoxia/genetics , Atovaquone/therapeutic use , Carcinoma, Non-Small-Cell Lung/diagnosis , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/metabolism , Energy Metabolism , Epithelial-Mesenchymal Transition/drug effects , Epithelial-Mesenchymal Transition/genetics , Female , Gene Expression Profiling , Humans , Immunohistochemistry , Lung Neoplasms/diagnosis , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Male , Molecular Imaging , Positron Emission Tomography Computed Tomography , STAT3 Transcription Factor/metabolism
5.
Magn Reson Imaging ; 58: 18-23, 2019 05.
Article in English | MEDLINE | ID: mdl-30639755

ABSTRACT

The purpose of this study was to compare the Infinite Cylinder and Forward Field methods of quantifying global venous oxygen saturation (Yv) in the superior sagittal sinus (SSS) from MRI phase data, and assess their applicability in systemic cerebrovascular disease.15 children with sickle cell disease (SCD) and 10 healthy age-matched controls were imaged on a 3.0 T MRI system. Anatomical and phase data around the superior sagittal sinus were acquired from a clinically available susceptibility weighted imaging sequence and converted to Yv using the Infinite Cylinder and Forward Field methods. Yv was significantly higher when calculated using the Infinite Cylinder method compared to the Forward Field method in both patients (p = 0.003) and controls (p < 0.001). A significant difference in Yv was observed between patients and controls for the Forward Field method only (p = 0.006). While various implementations of Yv quantification can be used in practice, the results can differ significantly. Simplistic models such as the Infinite Cylinder method may be easier to implement, but their dependence on broad assumptions can lead to an overestimation of Yv, and may reduce the sensitivity to pathophysiological changes in Yv.


Subject(s)
Anemia, Sickle Cell/blood , Cerebrovascular Circulation , Magnetic Resonance Imaging , Oxygen/chemistry , Adolescent , Anemia, Sickle Cell/diagnostic imaging , Brain Mapping , Case-Control Studies , Child , Female , Hematocrit , Humans , Male , Oximetry
6.
Neuroimage ; 187: 128-144, 2019 02 15.
Article in English | MEDLINE | ID: mdl-29277404

ABSTRACT

The ultimate goal of calibrated fMRI is the quantitative imaging of oxygen metabolism (CMRO2), and this has been the focus of numerous methods and approaches. However, one underappreciated aspect of this quest is that in the drive to measure CMRO2, many other physiological parameters of interest are often acquired along the way. This can significantly increase the value of the dataset, providing greater information that is clinically relevant, or detail that can disambiguate the cause of signal variations. This can also be somewhat of a double-edged sword: calibrated fMRI experiments combine multiple parameters into a physiological model that requires multiple steps, thereby providing more opportunity for error propagation and increasing the noise and error of the final derived values. As with all measurements, there is a trade-off between imaging time, spatial resolution, coverage, and accuracy. In this review, we provide a brief overview of the benefits and pitfalls of extracting multiparametric measurements of cerebral physiology through calibrated fMRI experiments.


Subject(s)
Brain Mapping/methods , Cerebral Cortex/diagnostic imaging , Cerebral Cortex/physiology , Magnetic Resonance Imaging/methods , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/physiopathology , Animals , Calibration , Cerebral Blood Volume , Cerebral Cortex/blood supply , Cerebrovascular Circulation , Humans , Image Processing, Computer-Assisted/methods , Oxygen/metabolism , Oxygen Consumption
7.
Brain Behav ; 7(11): e00811, 2017 11.
Article in English | MEDLINE | ID: mdl-29201539

ABSTRACT

Introduction: Transcranial Doppler ultrasonography (TCD) is a clinical tool for stratifying ischemic stroke risk by identifying abnormal elevations in blood flow velocity (BFV) in the middle cerebral artery (MCA). However, TCD is not effective at screening for subtle neurologic injury such as silent cerebral infarcts. To better understand this disparity, we compared TCD measures of BFV with tissue-level cerebral blood flow (CBF) using arterial spin-labeling MRI in children with and without sickle cell disease, and correlated these measurements against clinical hematologic measures of disease severity. Methods: TCD and MRI assessment were performed in 13 pediatric sickle cell disease patients and eight age-matched controls. Using MRI measures of MCA diameter and territory weight, TCD measures of BFV in the MCA [cm/s] were converted into units of CBF [ml min-1100 g-1] for comparison. Results: There was no significant association between TCD measures of BFV in the MCA and corresponding MRI measures of CBF in patients (r = .28, p = .39) or controls (r = .10, p = .81). After conversion from BFV into units of CBF, a strong association was observed between TCD and MRI measures (r = .67, p = .017 in patients, r = .86, p = .006 in controls). While BFV in the MCA showed a lack of correlation with arterial oxygen content, an inverse association was observed for CBF measurements. Conclusions: This study demonstrates that BFV in the MCA cannot be used as a surrogate marker for tissue-level CBF in children with sickle cell disease. Therefore, TCD alone may not be sufficient for understanding and predicting subtle pathophysiology in this population, highlighting the potential clinical value of tissue-level CBF.


Subject(s)
Anemia, Sickle Cell , Infarction, Middle Cerebral Artery , Magnetic Resonance Imaging/methods , Ultrasonography, Doppler, Transcranial/methods , Adolescent , Anemia, Sickle Cell/complications , Anemia, Sickle Cell/physiopathology , Blood Flow Velocity , Cerebrovascular Circulation , Child , Child, Preschool , Female , Humans , Infarction, Middle Cerebral Artery/diagnosis , Infarction, Middle Cerebral Artery/etiology , Male , Middle Cerebral Artery/diagnostic imaging , Reproducibility of Results
8.
Br J Haematol ; 176(2): 280-287, 2017 Jan.
Article in English | MEDLINE | ID: mdl-27905100

ABSTRACT

Overt ischaemic stroke is one of the most devastating complications in children with sickle cell disease (SCD). The compensatory response to anaemia in SCD includes an increase in cerebral blood flow (CBF) by accessing cerebrovascular dilatory reserve. Exhaustion of dilatory reserve secondary to anaemic stress may lead to cerebral ischaemia. The purpose of this study was to investigate CBF and cerebrovascular reactivity (CVR) using magnetic resonance imaging (MRI) in children with SCD and to correlate these with haematological markers of anaemia. Baseline CBF was measured using arterial spin labelling. Blood-oxygen level-dependent MRI in response to a CO2 stimulus was used to acquire CVR. In total, 28 children with SCD (23 not on any disease-modifying treatment, 5 on chronic transfusion) and 22 healthy controls were imaged using MRI. Transfusion patients were imaged at two time points to assess the effect of changes in haematocrit after a transfusion cycle. In children with SCD, CBF was significantly elevated compared to healthy controls, while CVR was significantly reduced. Both measures were significantly correlated with haematocrit. For transfusion patients, CBF decreased and CVR increased following a transfusion cycle. Lastly, a significant correlation was observed between CBF and CVR in both children with SCD and healthy controls.


Subject(s)
Anemia, Sickle Cell/physiopathology , Anemia/pathology , Cerebrovascular Circulation , Magnetic Resonance Imaging/methods , Adolescent , Blood Transfusion , Child , Dilatation , Female , Hematocrit , Humans , Male , Spin Labels
9.
Neuroimage ; 146: 327-332, 2017 02 01.
Article in English | MEDLINE | ID: mdl-27720821

ABSTRACT

The relationship between venous blood oxygenation and change in transverse relaxation rate (ΔR2*) plays a key role in calibrated BOLD fMRI. This relationship, defined by the parameter ß, has previously been determined using theoretical simulations and experimental measures. However, these earlier studies have been confounded by the change in venous cerebral blood volume (CBV) in response to functional tasks. This study used a double-echo gradient echo EPI scheme in conjunction with a graded isocapnic hyperoxic sequence to assess quantitatively the relationship between the fractional venous blood oxygenation (1-Yv) and transverse relaxation rate of grey matter (ΔR2⁢GM*), without inducing a change in vCBV. The results demonstrate that the relationship between ΔR2* and fractional venous oxygenation at all magnet field strengths studied was adequately described by a linear relationship. The gradient of this relationship did not increase monotonically with field strength, which may be attributed to the relative contributions of intravascular and extravascular signals which will vary with both field strength and blood oxygenation.


Subject(s)
Cerebral Cortex/blood supply , Cerebral Cortex/metabolism , Gray Matter/blood supply , Gray Matter/metabolism , Oxygen Consumption , Oxygen/metabolism , Adult , Brain Mapping , Female , Humans , Hypercapnia/metabolism , Hyperoxia/metabolism , Magnetic Resonance Imaging , Male , Oxygen/blood , Veins , Young Adult
10.
J Physiol ; 594(10): 2681-9, 2016 05 15.
Article in English | MEDLINE | ID: mdl-26847953

ABSTRACT

KEY POINTS: Cerebrovascular reactivity (CVR) reflects the vasodilatory reserve of cerebral resistance vessels. Normal development in children is associated with significant changes in blood pressure, cerebral blood flow (CBF) and cerebral oxygen metabolism. Therefore, it stands to reason that CVR will also undergo changes during this period. The study acquired magnetic resonance imaging measures of CVR and CBF in healthy children and young adults to trace their changes with age. We found that CVR changes in two phases, increasing with age until the mid-teens, followed by a decrease. Baseline CBF declined steadily with age. We conclude that CVR varies with age during childhood, which prompts future CVR studies involving children to take into account the effect of development. ABSTRACT: Cerebrovascular reactivity (CVR) reflects the vasculature's ability to accommodate changes in blood flow demand thereby serving as a critical imaging tool for mapping vascular reserve. Normal development is associated with extensive physiological changes in blood pressure, cerebral blood flow and cerebral metabolic rate of oxygen, all of which can affect CVR. Moreover, the evolution of these physiological parameters is most prominent during childhood. Therefore, the aim of this study was to use non-invasive magnetic resonance imaging (MRI) to characterize the developmental trajectories of CVR in healthy children and young adults, and relate them to changes in cerebral blood flow (CBF). Thirty-four healthy subjects (17 males, 17 females; age 9-30 years) underwent CVR assessment using blood oxygen level-dependent MRI in combination with a computer controlled CO2 stimulus. In addition, baseline CBF was measured with a pulsed arterial spin labelling sequence. CVR exhibited a gradual increase with age in both grey and white matter up to 14.7 years. After this break point, a negative correlation with age was detected. Baseline CBF maintained a consistent negative linear correlation across the entire age range. The significant age-dependent changes in CVR and CBF demonstrate the evolution of cerebral haemodynamics in children and should be taken into consideration. The shift in developmental trajectory of CVR from increasing to decreasing suggests that physiological factors beyond baseline CBF also influence CVR.


Subject(s)
Brain/blood supply , Brain/diagnostic imaging , Cerebrovascular Circulation/physiology , Magnetic Resonance Imaging/trends , Adolescent , Adult , Age Factors , Brain/growth & development , Child , Female , Humans , Male , Young Adult
11.
Neuroimage ; 105: 323-31, 2015 Jan 15.
Article in English | MEDLINE | ID: mdl-25462687

ABSTRACT

The physiological effect of hyperoxia has been poorly characterize d, with studies reporting conflicting results on the role of hyperoxia as a vasoconstrictor. It is not clear whether hyperoxia is the primary contributor to vasoconstriction or whether induced changes in CO2 that commonly accompany hyperoxia are a factor. As calibrated BOLD fMRI based on hyperoxia becomes more widely used, it is essential to understand the effects of oxygen on resting cerebral physiology. This study used a RespirAct™ system to deliver a repeatable isocapnic hyperoxia stimulus to investigate the independent effect of O2 on cerebral physiology, removing any potential confounds related to altered CO2. T1-independent Phase Contrast MRI was used to demonstrate that isocapnic hyperoxia has no significant effect on carotid blood flow (normoxia 201 ± 11 ml/min, -0.3% ± 0.8% change during hyperoxia, p = 0.8), while Look Locker ASL was used to demonstrate that there is no significant change in arterial cerebral blood volume (normoxia 1.3% ± 0.4%, -0.5 ± 5% change during hyperoxia). These are in contrast to significant changes in carotid blood flow observed for hypercapnia (6.8% ± 1.5%/mm Hg CO2). In addition, magnetoencephalography provided a method to monitor the effect of isocapnic hyperoxia on neuronal oscillatory power. In response to hyperoxia, a significant focal decrease in oscillatory power was observed across the alpha, beta and low gamma bands in the occipital lobe, compared to a more global significant decrease on hypercapnia. This work suggests that isocapnic hyperoxia provides a more reliable stimulus than hypercapnia for calibrated BOLD, and that previous reports of vasoconstriction during hyperoxia probably reflect the effects of hyperoxia-induced changes in CO2. However, hyperoxia does induce changes in oscillatory power consistent with an increase in vigilance, but these changes are smaller than those observed under hypercapnia. The effect of this change in neural activity on calibrated BOLD using hyperoxia or combined hyperoxia and hypercapnia needs further investigation.


Subject(s)
Brain Waves/physiology , Brain/physiopathology , Cerebrovascular Circulation/physiology , Hyperoxia/physiopathology , Magnetic Resonance Imaging/methods , Magnetoencephalography/methods , Adult , Female , Humans , Hypercapnia/physiopathology , Male , Middle Aged , Young Adult
12.
Neuroimage ; 101: 458-65, 2014 Nov 01.
Article in English | MEDLINE | ID: mdl-25091128

ABSTRACT

The measurement of venous cerebral blood oxygenation (Yv) has potential applications in the study of patient groups where oxygen extraction and/or metabolism are compromised. It is also useful for fMRI studies to assess the stimulus-induced changes in Yv, particularly since basal Yv partially accounts for inter-subject variation in the haemodynamic response to a stimulus. A range of MRI-based methods of measuring Yv have been developed recently. Here, we use a method based on the change in phase in the MR image arising from the field perturbation caused by deoxygenated haemoglobin in veins. We build on the existing phase based approach (Method I), where Yv is measured in a large vein (such as the superior sagittal sinus) based on the field shift inside the vein with assumptions as to the vein's shape and orientation. We demonstrate two novel modifications which address limitations of this method. The first modification (Method II), maps the actual form of the vein, rather than assume a given shape and orientation. The second modification (Method III) uses the intra and perivascular phase change in response to a known change in Yv on hyperoxia to measure normoxic Yv in smaller veins. Method III can be applied to veins whose shape, size and orientation are not accurately known, thus allowing more localised measures of venous oxygenation. Results demonstrate that the use of an overly fine spatial filter caused an overestimation in Yv for Method I, whilst the measurement of Yv using Method II was less sensitive to this bias, giving Yv = 0.62 ± 0.03. Method III was applied to mapping of Yv in local veins across the brain, yielding a distribution of values with a mode of Yv = 0.661 ± 0.008.


Subject(s)
Brain/metabolism , Cerebrovascular Circulation/physiology , Image Processing, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Oxygen/blood , Adult , Brain/blood supply , Female , Humans , Male , Young Adult
13.
Neuroimage ; 58(4): 1034-43, 2011 Oct 15.
Article in English | MEDLINE | ID: mdl-21762783

ABSTRACT

The effect of hypercapnia (an increase in CO(2) concentration in the blood) on the functional magnetic resonance imaging (fMRI) blood oxygenation level dependent (BOLD) haemodynamic response has been well characterised and is commonly used for BOLD calibration. However, relatively little is known of the effect of hypercapnia on the electrical brain processes that underlie the BOLD response. Here, we investigate the effect of hypercapnia on resting and stimulus induced changes in neural oscillations using a feed-forward low gas flow system to deliver a reliable and repeatable level of hypercapnia. Magnetoencephalography (MEG) is used in conjunction with beamformer source localisation algorithms to non-invasively image changes in oscillatory amplitude. At rest, we find robust oscillatory power loss in the alpha (8Hz-13Hz), beta (13Hz-30Hz) and low gamma (30Hz-50Hz) frequency bands in response to hypercapnia. Further, we show that the spatial signature of this power loss differs across frequency bands, with the largest effect being observed for the beta band in sensorimotor cortices. We also measure changes in oscillatory activity induced by visual and motor events, and the effect of hypercapnia on these changes; whilst the percentage change in oscillatory activity on activation was largely unaffected by hypercapnia, the absolute change in oscillatory amplitude differed between normocapnia and hypercapnia. This work supports invasive recordings made in animals, and the results have potential implications for calibrated BOLD studies.


Subject(s)
Hypercapnia/pathology , Magnetoencephalography , Rest/physiology , Administration, Inhalation , Adult , Alpha Rhythm/physiology , Beta Rhythm/physiology , Brain Mapping , Carbon Dioxide/administration & dosage , Carbon Dioxide/blood , Carbon Dioxide/pharmacology , Female , Humans , Image Processing, Computer-Assisted , Magnetic Resonance Imaging , Male , Motor Cortex/physiology , Photic Stimulation , Somatosensory Cortex/physiology , Visual Cortex/physiology , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...