Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Plant Dis ; 2022 Nov 16.
Article in English | MEDLINE | ID: mdl-36383987

ABSTRACT

Laurel wilt (LW) is a vascular disease caused by the fungus Harringtonia lauricola (previously Raffaelea lauricola) and transmitted by its primary vector, the redbay ambrosia beetle (Xyleborus glabratus, RAB), both of which were first detected in the United States (US) in 2002, likely introduced from their native range in Asia (Fraedrich et al. 2008; Harrington et al. 2008). LW has since spread across the southeastern US causing the death of millions of native redbay, sassafras, silk bay, swamp bay and other native Lauraceae species (Hughes et al. 2017). Detection of LW on the deciduous understory shrub northern spicebush (Lindera benzoin) was previously reported in South Carolina (Fraedrich et al. 2016) and Louisiana (Olatinwo et al. 2021) and is hereby confirmed in Kentucky and Tennessee. Spicebush plants displaying typical LW symptoms were observed in September 2020 on a property spanning the KY/TN border (Christian Co., KY and Montgomery Co., TN). Several dense stands of spicebush exhibited leaf wilt, early fall leaf coloration, dead leaves on branches, and black streaks of discolored xylem. LW was already confirmed on sassafras in the area (Loyd et al. 2020), and there were abundant dead sassafras nearby. Ambrosia beetle boring dust was observed and callow female RABs emerged from containerized bolts of spicebush collected from the site, indicating that the vector used spicebush as a brood host. Samples of spicebush sapwood tissue collected from two symptomatic plants were plated onto CSMA (cycloheximide-streptomycin malt extract agar) medium. The cultures were grown at room temperature in ambient light, and a fungus was recovered and further transferred onto MEA (malt extract agar) and PDA (potato dextrose agar) media. The morphology of the two fungal isolates, referred to as LW415 and LW416, matched the typical white mucoid growth and ovoid conidia of H. lauricola (Harrington et al. 2008). DNA was extracted from conidia harvested from two-week-old MEA cultures using a modified method of Dreaden et al. (2014). The identity of the fungus was confirmed by performing PCR with the H. lauricola-specific microsatellite primer sets IFW and CHK (Dreaden et al. 2014, Parra et al. 2020). A positive amplification product was obtained for LW415 and LW416 for both primer sets, validating their identification as H. lauricola. To confirm pathogenicity, four spicebush seedlings (mean height 22.5 cm; mean ground line diameter 3.3 mm) were inoculated: two with H. lauricola isolate LW415 grown on PDA for two weeks at room temperature in the dark, and two were mock-inoculated with sterile PDA as a control. A scalpel was used to nick the spicebush stem at a bud about 5 cm above groundline, and a 3 mm2 agar plug was placed in the wound and wrapped with parafilm. The spicebush seedlings were maintained in a growth chamber with an average temperature of 24°C and a 15 h photoperiod. Wilt symptoms were evident on inoculated seedlings after two weeks, while the control plants remained healthy. Four weeks post-inoculation, black staining of the vascular tissue was present in the symptomatic seedlings, and a fungus matching the morphology of H. lauricola was consistently recovered, while no fungus was isolated from the control plants. These results provide additional evidence that northern spicebush populations may be threatened by LW and could serve as a reservoir for the pathogen and vector (Gramling 2010). The spread of LW and RAB on spicebush may gain importance as preferred hosts (e.g., sassafras) are killed.

2.
Ecol Evol ; 7(15): 5571-5579, 2017 08.
Article in English | MEDLINE | ID: mdl-28808539

ABSTRACT

Interactions between introduced plants and soils they colonize are central to invasive species success in many systems. Belowground biotic and abiotic changes can influence the success of introduced species as well as their native competitors. All plants alter soil properties after colonization but, in the case of many invasive plant species, it is unclear whether the strength and direction of these soil conditioning effects are due to plant traits, plant origin, or local population characteristics and site conditions in the invaded range. Phragmites australis in North America exists as a mix of populations of different evolutionary origin. Populations of endemic native Phragmites australis americanus are declining, while introduced European populations are important wetland invaders. We assessed soil conditioning effects of native and non-native P. australis populations on early and late seedling survival of native and introduced wetland plants. We further used a soil biocide treatment to assess the role of soil fungi on seedling survival. Survival of seedlings in soils colonized by P. australis was either unaffected or negatively affected; no species showed improved survival in P. australis-conditioned soils. Population of P. australis was a significant factor explaining the response of seedlings, but origin (native or non-native) was not a significant factor. Synthesis: Our results highlight the importance of phylogenetic control when assessing impacts of invasive species to avoid conflating general plant traits with mechanisms of invasive success. Both native (noninvasive) and non-native (invasive) P. australis populations reduced seedling survival of competing plant species. Because soil legacy effects of native and non-native P. australis are similar, this study suggests that the close phylogenetic relationship between the two populations, and not the invasive status of introduced P. australis, is more relevant to their soil-mediated impact on other plant species.

3.
Ecol Evol ; 5(11): 2127-39, 2015 Jun.
Article in English | MEDLINE | ID: mdl-26078850

ABSTRACT

Soil pathogens affect plant community structure and function through negative plant-soil feedbacks that may contribute to the invasiveness of non-native plant species. Our understanding of these pathogen-induced soil feedbacks has relied largely on observations of the collective impact of the soil biota on plant populations, with few observations of accompanying changes in populations of specific soil pathogens and their impacts on invasive and noninvasive species. As a result, the roles of specific soil pathogens in plant invasions remain unknown. In this study, we examine the diversity and virulence of soil oomycete pathogens in freshwater wetland soils invaded by non-native Phragmites australis (European common reed) to better understand the potential for soil pathogen communities to impact a range of native and non-native species and influence invasiveness. We isolated oomycetes from four sites over a 2-year period, collecting nearly 500 isolates belonging to 36 different species. These sites were dominated by species of Pythium, many of which decreased seedling survival of a range of native and invasive plants. Despite any clear host specialization, many of the Pythium species were differentially virulent to the native and non-native plant species tested. Isolates from invaded and noninvaded soils were equally virulent to given individual plant species, and no apparent differences in susceptibility were observed between the collective groups of native and non-native plant species.

SELECTION OF CITATIONS
SEARCH DETAIL
...