Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
J Clin Immunol ; 44(4): 87, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38578402

ABSTRACT

We present a case study of a young male with a history of 22q11.2 deletion syndrome (22qDS), diagnosed with systemic capillary leak syndrome (SCLS) who presented with acute onset of diffuse anasarca and sub-comatose obtundation. We hypothesized that his co-presentation of neurological sequelae might be due to blood-brain barrier (BBB) susceptibility conferred by the 22q11.2 deletion, a phenotype that we have previously identified in 22qDS. Using pre- and post-intravenous immunoglobulins (IVIG) patient serum, we studied circulating biomarkers of inflammation and assessed the potential susceptibility of the 22qDS BBB. We employed in vitro cultures of differentiated BBB-like endothelial cells derived from a 22qDS patient and a healthy control. We found evidence of peripheral inflammation and increased serum lipopolysaccharide (LPS) alongside endothelial cells in circulation. We report that the patient's serum significantly impairs barrier function of the 22qDS BBB compared to control. Only two other cases of pediatric SCLS with neurologic symptoms have been reported, and genetic risk factors have been suggested in both instances. As the third case to be reported, our findings are consistent with the hypothesis that genetic susceptibility of the BBB conferred by genes such as claudin-5 deleted in the 22q11.2 region promoted neurologic involvement during SCLS in this patient.


Subject(s)
Capillary Leak Syndrome , DiGeorge Syndrome , Humans , Male , Child , Capillary Leak Syndrome/diagnosis , Blood-Brain Barrier , Endothelial Cells , Permeability , Inflammation
2.
bioRxiv ; 2023 Jun 06.
Article in English | MEDLINE | ID: mdl-37333071

ABSTRACT

Several microglia-expressed genes have emerged as top risk variants for Alzheimer's disease (AD). Impaired microglial phagocytosis is one of the main proposed outcomes by which these AD-risk genes may contribute to neurodegeneration, but the mechanisms translating genetic association to cellular dysfunction remain unknown. Here we show that microglia form lipid droplets (LDs) upon exposure to amyloid-beta (Aß), and that their LD load increases with proximity to amyloid plaques in brains from human patients and the AD mouse model 5xFAD. LD formation is dependent upon age and disease progression and is more prominent in the hippocampus in mice and humans. Despite variability in LD load between microglia from male versus female animals and between cells from different brain regions, LD-laden microglia exhibited a deficit in Aß phagocytosis. Unbiased lipidomic analysis identified a substantial decrease in free fatty acids (FFAs) and a parallel increase in triacylglycerols (TAGs) as the key metabolic transition underlying LD formation. We demonstrate that DGAT2, a key enzyme for the conversion of FFAs to TAGs, promotes microglial LD formation, is increased in microglia from 5xFAD and human AD brains, and that inhibiting DGAT2 improved microglial uptake of Aß. These findings identify a new lipid-mediated mechanism underlying microglial dysfunction that could become a novel therapeutic target for AD.

3.
Eur J Immunol ; 53(1): e2249840, 2023 01.
Article in English | MEDLINE | ID: mdl-36337041

ABSTRACT

Mice modeling the hemizygous deletion of chromosome 22q11.2 (22qMc) have been utilized to address various clinical phenotypes associated with the disease, including cardiac malformations, altered neural circuitry, and behavioral deficits. Yet, the status of the T cell compartment, an important clinical concern among 22q11.2 deletion syndrome (22qDS) patients, has not been addressed. While infancy and early childhood in 22qDS are associated with deficient T cell numbers and thymic hypoplasia, which can be severe in a small subset of patients, studies suggest normalization of the T cell counts by adulthood. We found that adult 22qMc do not exhibit thymic hypoplasia or altered thymic T cell development. Our findings that immune cell counts and inflammatory T cell activation are unaffected in 22qMc lend support to the hypothesis that human 22qDS immunodeficiencies are secondary to thymic hypoplasia, rather than intrinsic effects due to the deletion. Furthermore, the 22q11.2 deletion does not impact the differentiation capacity of T cells, nor their activity and response during inflammatory activation. Thus, 22qMc reflects the T cell compartment in adult 22qDS patients, and our findings suggest that 22qMc may serve as a novel model to address experimental and translational aspects of immunity in 22qDS.


Subject(s)
DiGeorge Syndrome , Immunologic Deficiency Syndromes , Humans , Child, Preschool , Adult , Mice , Animals , DiGeorge Syndrome/genetics , DiGeorge Syndrome/complications , Chromosome Deletion , Thymus Gland , Immunologic Deficiency Syndromes/genetics , T-Lymphocytes
4.
Brain ; 144(5): 1351-1360, 2021 06 22.
Article in English | MEDLINE | ID: mdl-33876226

ABSTRACT

Neuroimmune dysregulation is implicated in neuropsychiatric disorders including schizophrenia. As the blood-brain barrier is the immunological interface between the brain and the periphery, we investigated whether this vascular phenotype is intrinsically compromised in the most common genetic risk factor for schizophrenia, the 22q11.2 deletion syndrome (22qDS). Blood-brain barrier like endothelium differentiated from human 22qDS+schizophrenia-induced pluripotent stem cells exhibited impaired barrier integrity, a phenotype substantiated in a mouse model of 22qDS. The proinflammatory intercellular adhesion molecule-1 was upregulated in 22qDS+schizophrenia-induced blood-brain barrier and in 22qDS mice, indicating compromise of the blood-brain barrier immune privilege. This immune imbalance resulted in increased migration/activation of leucocytes crossing the 22qDS+schizophrenia blood-brain barrier. We also found heightened astrocyte activation in murine 22qDS, suggesting that the blood-brain barrier promotes astrocyte-mediated neuroinflammation. Finally, we substantiated these findings in post-mortem 22qDS brain tissue. Overall, the barrier-promoting and immune privilege properties of the 22qDS blood-brain barrier are compromised, and this might increase the risk for neuropsychiatric disease.


Subject(s)
22q11 Deletion Syndrome/pathology , Blood-Brain Barrier/pathology , 22q11 Deletion Syndrome/immunology , Animals , Astrocytes/metabolism , Humans , Immune Privilege/physiology , Inflammation/metabolism , Mice
5.
Brain ; 144(6): 1670-1683, 2021 07 28.
Article in English | MEDLINE | ID: mdl-33723591

ABSTRACT

The concerted actions of the CNS and the immune system are essential to coordinating the outcome of neuroinflammatory responses. Yet, the precise mechanisms involved in this crosstalk and their contribution to the pathophysiology of neuroinflammatory diseases largely elude us. Here, we show that the CNS-endogenous hedgehog pathway, a signal triggered as part of the host response during the inflammatory phase of multiple sclerosis and experimental autoimmune encephalomyelitis, attenuates the pathogenicity of human and mouse effector CD4 T cells by regulating their production of inflammatory cytokines. Using a murine genetic model, in which the hedgehog signalling is compromised in CD4 T cells, we show that the hedgehog pathway acts on CD4 T cells to suppress the pathogenic hallmarks of autoimmune neuroinflammation, including demyelination and axonal damage, and thus mitigates the development of experimental autoimmune encephalomyelitis. Impairment of hedgehog signalling in CD4 T cells exacerbates brain-brainstem-cerebellum inflammation and leads to the development of atypical disease. Moreover, we present evidence that hedgehog signalling regulates the pathogenic profile of CD4 T cells by limiting their production of the inflammatory cytokines granulocyte-macrophage colony-stimulating factor and interferon-γ and by antagonizing their inflammatory program at the transcriptome level. Likewise, hedgehog signalling attenuates the inflammatory phenotype of human CD4 memory T cells. From a therapeutic point of view, our study underlines the potential of harnessing the hedgehog pathway to counteract ongoing excessive CNS inflammation, as systemic administration of a hedgehog agonist after disease onset effectively halts disease progression and significantly reduces neuroinflammation and the underlying neuropathology. We thus unveil a previously unrecognized role for the hedgehog pathway in regulating pathogenic inflammation within the CNS and propose to exploit its ability to modulate this neuroimmune network as a strategy to limit the progression of ongoing neuroinflammation.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , Encephalomyelitis, Autoimmune, Experimental/immunology , Hedgehog Proteins/immunology , Inflammation/immunology , Animals , Brain/immunology , Brain/pathology , CD4-Positive T-Lymphocytes/pathology , Encephalomyelitis, Autoimmune, Experimental/metabolism , Encephalomyelitis, Autoimmune, Experimental/pathology , Hedgehog Proteins/metabolism , Humans , Inflammation/metabolism , Mice , Spinal Cord/immunology , Spinal Cord/pathology
7.
J Neuroinflammation ; 12: 56, 2015 Mar 25.
Article in English | MEDLINE | ID: mdl-25888781

ABSTRACT

BACKGROUND: Chronic neuroinflammation and calcium (Ca(+2)) dysregulation are both components of Alzheimer's disease. Prolonged neuroinflammation produces elevation of pro-inflammatory cytokines and reactive oxygen species which can alter neuronal Ca(+2) homeostasis via L-type voltage-dependent Ca(+2) channels (L-VDCCs) and ryanodine receptors (RyRs). Chronic neuroinflammation also leads to deficits in spatial memory, which may be related to Ca(+2) dysregulation. METHODS: The studies herein use an in vivo model of chronic neuroinflammation: rats were infused intraventricularly with a continuous small dose of lipopolysaccharide (LPS) or artificial cerebrospinal fluid (aCSF) for 28 days. The rats were treated with the L-VDCC antagonist nimodipine or the RyR antagonist dantrolene. RESULTS: LPS-infused rats had significant memory deficits in the Morris water maze, and this deficit was ameliorated by treatment with nimodipine. Synaptosomes from LPS-infused rats had increased Ca(+2) uptake, which was reduced by a blockade of L-VDCCs either in vivo or ex vivo. CONCLUSIONS: Taken together, these data indicate that Ca(+2) dysregulation during chronic neuroinflammation is partially dependent on increases in L-VDCC function. However, blockade of the RyRs also slightly improved spatial memory of the LPS-infused rats, demonstrating that other Ca(+2) channels are dysregulated during chronic neuroinflammation. Ca(+2)-dependent immediate early gene expression was reduced in LPS-infused rats treated with dantrolene or nimodipine, indicating normalized synaptic function that may underlie improvements in spatial memory. Pro-inflammatory markers are also reduced in LPS-infused rats treated with either drug. Overall, these data suggest that Ca(+2) dysregulation via L-VDCCs and RyRs play a crucial role in memory deficits resulting from chronic neuroinflammation.


Subject(s)
Calcium Channels, L-Type/metabolism , Calcium/metabolism , Encephalitis/complications , Encephalitis/pathology , Memory Disorders/etiology , Ryanodine Receptor Calcium Release Channel/metabolism , AIDS-Related Complex/metabolism , Analysis of Variance , Animals , Calcium Channel Blockers/therapeutic use , Calcium Channels, L-Type/genetics , Chronic Disease , Dantrolene/therapeutic use , Disease Models, Animal , Encephalitis/chemically induced , Encephalitis/drug therapy , Gene Expression Regulation/drug effects , Lipopolysaccharides/toxicity , Maze Learning/drug effects , Memory Disorders/drug therapy , Muscle Relaxants, Central/therapeutic use , Nimodipine/therapeutic use , Rats , Rats, Inbred F344 , Ryanodine Receptor Calcium Release Channel/genetics , Spatial Memory/drug effects
8.
J Neuroinflammation ; 12: 63, 2015 Apr 02.
Article in English | MEDLINE | ID: mdl-25889938

ABSTRACT

The role of insulin in the brain is still not completely understood. In the periphery, insulin can decrease inflammation induced by lipopolysaccharide (LPS); however, whether insulin can reduce inflammation within the brain is unknown. Experiments administrating intranasal insulin to young and aged adults have shown that insulin improves memory. In our animal model of chronic neuroinflammation, we administered insulin and/or LPS directly into the brain via the fourth ventricle for 4 weeks in young rats; we then analyzed their spatial memory and neuroinflammatory response. Additionally, we administered insulin or artificial cerebral spinal fluid (aCSF), in the same manner, to aged rats and then analyzed their spatial memory and neuroinflammatory response. Response to chronic neuroinflammation in young rats was analyzed in the presence or absence of insulin supplementation. Here, we show for the first time that insulin infused (i.c.v.) to young rats significantly attenuated the effects of LPS by decreasing the expression of neuroinflammatory markers in the hippocampus and by improving performance in the Morris water pool task. In young rats, insulin infusion alone significantly improved their performance as compared to all other groups. Unexpectedly, in aged rats, the responsiveness to insulin was completely absent, that is, spatial memory was still impaired suggesting that an age-dependent insulin resistance may contribute to the cognitive impairment observed in neurodegenerative diseases. Our data suggest a novel therapeutic effect of insulin on neuroinflammation in the young but not the aged brain.


Subject(s)
Aging , Encephalitis/complications , Encephalitis/pathology , Hippocampus/metabolism , Insulin/therapeutic use , Memory Disorders/drug therapy , Analysis of Variance , Animals , Cytokines/genetics , Cytokines/metabolism , Disease Models, Animal , Encephalitis/chemically induced , Encephalitis/drug therapy , Gene Expression Regulation/drug effects , Hippocampus/drug effects , Male , Maze Learning/drug effects , Memory Disorders/etiology , Protein Kinase C/metabolism , Rats , Rats, Inbred F344 , Reaction Time/drug effects , Spatial Memory/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...