Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Med Sci Sports Exerc ; 55(5): 813-823, 2023 05 01.
Article in English | MEDLINE | ID: mdl-36728986

ABSTRACT

INTRODUCTION: Spinal cord injury (SCI) produces diminished bone perfusion and bone loss in the paralyzed limbs. Activity-based physical therapy (ABPT) modalities that mobilize and/or reload the paralyzed limbs (e.g., bodyweight-supported treadmill training (BWSTT) and passive-isokinetic bicycle training) transiently promote lower-extremity blood flow (BF). However, it remains unknown whether ABPT alter resting-state bone BF or improve skeletal integrity after SCI. METHODS: Four-month-old male Sprague-Dawley rats received T 9 laminectomy alone (SHAM; n = 13) or T 9 laminectomy with severe contusion SCI ( n = 48). On postsurgery day 7, SCI rats were stratified to undergo 3 wk of no ABPT, quadrupedal (q)BWSTT, or passive-isokinetic hindlimb bicycle training. Both ABPT regimens involved two 20-min bouts per day, performed 5 d·wk -1 . We assessed locomotor recovery, bone turnover with serum assays and histomorphometry, distal femur bone microstructure using in vivo microcomputed tomography, and femur and tibia resting-state bone BF after in vivo microsphere infusion. RESULTS: All SCI animals displayed immediate hindlimb paralysis. SCI without ABPT exhibited uncoupled bone turnover and progressive cancellous and cortical bone loss. qBWSTT did not prevent these deficits. In comparison, hindlimb bicycle training suppressed surface-level bone resorption indices without suppressing bone formation indices and produced robust cancellous and cortical bone recovery at the distal femur. No bone BF deficits existed 4 wk after SCI, and neither qBWSTT nor bicycle altered resting-state bone perfusion or locomotor recovery. However, proximal tibia BF correlated with several histomorphometry-derived bone formation and resorption indices at this skeletal site across SCI groups. CONCLUSIONS: These data indicate that passive-isokinetic bicycle training reversed cancellous and cortical bone loss after severe SCI through antiresorptive and/or bone anabolic actions, independent of locomotor recovery or changes in resting-state bone perfusion.


Subject(s)
Bone and Bones , Spinal Cord Injuries , Rats , Male , Animals , Rats, Sprague-Dawley , X-Ray Microtomography , Spinal Cord Injuries/therapy , Perfusion
2.
Anat Rec (Hoboken) ; 305(11): 3133-3149, 2022 11.
Article in English | MEDLINE | ID: mdl-35090092

ABSTRACT

The rice rat (Oryzomys palustris) is a nonconventional laboratory rodent species used to model some human bone disorders. However, no studies have been conducted to characterize the postcranial skeleton. Therefore, we aimed to investigate age- and gender-related features of the hindlimb skeleton of this species. We used femurs and tibiae from 94 rats of both genders aged 4-28 weeks. Bone mineral content (BMC), volumetric bone mineral density (vBMD), and biomechanical properties were determined in femurs. In addition, bone histomorphometry of tibiae was conducted to assess bone cell activities and bone turnover over time. Bone length, total metaphysis BMC and vBMD, mid-diaphyseal BMC and vBMD, cortical thickness, and cortical area progressively augmented with age. Whereas the increase in these parameters plateaued at age 16-22 weeks in female rats, they continued to rise to age 28 weeks in male rats. Furthermore, bone strength parameters increased with age, with few differences between genders. We also observed a rapid decrease in longitudinal growth between age 4 and 16 weeks. Whereas young rats had a greater bone formation rate and bone turnover, older rice rats had greater bone volume and trabecular thickness, with no differences between genders. (a) Sexual dimorphism in the rice rat becomes grossly evident at age 16 weeks; (b) the age-related increases in bone mass, structural cortical parameters, and in some biomechanical property parameters plateau at an older age in male than in female rats; and (c) bone growth and remodeling significantly decreased with age irrespective of the gender.


Subject(s)
Bone and Bones , Wetlands , Animals , Bone Density , Female , Hindlimb , Humans , Infant , Male , Rats , Sigmodontinae , Tibia
SELECTION OF CITATIONS
SEARCH DETAIL
...