Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Phytopathology ; 98(5): 547-54, 2008 May.
Article in English | MEDLINE | ID: mdl-18943222

ABSTRACT

Ground green waste is used as mulch in ornamental landscapes and for tree crops such as avocados. Survival of Armillaria mellea, Phytophthora cinnamomi, Sclerotinia sclerotiorum, and Tylenchulus semipenetrans was assessed for 8 weeks within unturned piles of either recently ground or partially composted green waste. S. sclerotiorum survived at the pile surface and at 10, 30, and 100 cm within the pile for the entire 8 weeks in both fresh green waste (FGW) and aged green waste (AGW). A. mellea and T. semipenetrans did not survive more than 2 days in FGW, while P. cinnamomi persisted for over 21 days in FGW. AGW was less effective in reducing pathogen viability than FGW, most likely because temperatures in AGW peaked at 45 degrees C compared with 70 degrees C in FGW. Survival modeling curves based on pile temperatures indicate the time to inactivate 10 propagules of pathogens was 11, 30, 363, and 50 days for A. mellea, P. cinnamomi, S. sclerotiorum, and T. semipenetrans, respectively. Sclerotia-forming pathogens pose the greatest risk for escape; to ensure eradication of persistent fungi, green waste stockpiles should be turned intermittently to mix pile contents and move pathogen propagules to a location within the pile where they are more likely to be killed by heat, microbial attack, or chemical degradation.


Subject(s)
Plants/microbiology , Plants/parasitology , Soil Microbiology , Soil/parasitology , Animals , Armillaria/growth & development , Ascomycota/growth & development , Phytophthora/growth & development , Tylenchoidea/growth & development , Waste Management
2.
Waste Manag ; 24(10): 981-7, 2004.
Article in English | MEDLINE | ID: mdl-15567663

ABSTRACT

To evaluate the effect of vermiculite addition on composting food wastes from Korean households, food wastes were composted in three small bins to which different additives were added. The following three bins were employed: in Case I, only recycled compost was composted; in Case II, food wastes with recycled compost; and in Case III, food wastes with recycled compost and vermiculite. In the experiment performed for 30 days, it was confirmed that the supplementary addition of vermiculite to the composting mixture did not significantly improve the weight loss rate and the decomposition rate of food wastes. Due to dilution through the use of inorganic vermiculite, the vermiculite addition reduced the organic matter concentration of the composting mixtures. Vermiculite addition did not raise the pH value. Weight losses of roughly 70% were observed based on calculating moisture loss as well as dry food waste loss and not considering additives, while dry food waste loss was 29.4% and 35.8% with and without the addition of vermiculite, respectively. For these experiments, the major portion of the weight loss was the loss of water. The results indicate a need to differentiate between weight loss percentages and decomposition percentages, and a need to indicate if either of these percentages includes or excludes the mass of additives.


Subject(s)
Aluminum Silicates , Biodegradation, Environmental , Garbage , Soil , Hydrogen-Ion Concentration , Korea , Waste Management/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...