Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
J Phys Chem Lett ; 15(9): 2573-2579, 2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38417042

ABSTRACT

Surface superconductivity, wherein electron pairing occurs at material surfaces or interfaces, has attracted a remarkable amount of attention since its discovery. Recent theoretical predictions have unveiled increased critical temperatures, especially at the surfaces of certain compounds and/or structures. The notion of "surface ordering" has been advanced to elucidate this phenomenon. Employing the framework of self-consistent Bogoliubov-de Gennes equations and a model incorporating correlated disorder, our study demonstrates the persistence of the surface ordering effect in the presence of weak to moderate bulk disorder. Intriguingly, our findings indicate that under moderate disorder conditions the surface critical temperature can be further increased, depending on the intensity and correlation of the disorder.

2.
J Phys Chem Lett ; 14(24): 5657-5664, 2023 Jun 22.
Article in English | MEDLINE | ID: mdl-37311195

ABSTRACT

Using the tight-binding Bogoliubov-de Gennes formalism, we describe the influence of the surface potential on the superconducting critical temperature at the surface. Surface details are taken into account within the framework of the self-consistent Lang-Kohn effective potential. The regimes of strong and weak coupling of superconducting correlations are considered. Our study reveals that, although the enhancement of the surface critical temperature, originating from the enhancement of the localized correlation due to the constructive interference between quasiparticle bulk orbits, can be sufficiently affected by the surface potential, this influence, nonetheless, strongly depends on the bulk material parameters, such as the effective electron density parameter and Fermi energy, and is likely to be negligible for some materials, in particular for narrow-band metals. Thus, superconducting properties of a surface can be controlled by the surface/interface potential properties, which offer an additional tuning knob for the superconducting state at the surface/interface.

3.
J Phys Condens Matter ; 32(45): 455702, 2020 Jul 20.
Article in English | MEDLINE | ID: mdl-32688355

ABSTRACT

There is a tacit assumption that multiband superconductors are essentially the same as multigap superconductors. More precisely, it is usually assumed that the number of excitation gaps in the single-particle energy spectrum of a uniform superconductor (i.e. number of peaks in the density of states of the superconducting electrons) determines the number of contributing bands in the corresponding superconducting model. Here we demonstrate that contrary to this widely accepted viewpoint, the superconducting magnetic properties are sensitive to the number of contributing bands even when the spectral gaps are degenerate and cannot be distinguished. In particular, we find that the crossover between superconductivity types I and II-the intertype regime-is strongly affected by the difference between characteristic lengths of multiple contributing condensates. The reason for this is that condensates with diverse characteristic lengths, when coexisting in one system, interfere constructively or destructively, which results in multi-condensate magnetic phenomena regardless of the presence/absence of the multigap spectrum of a superconducting multiband material.

SELECTION OF CITATIONS
SEARCH DETAIL