Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
Arch Biochem Biophys ; 298(2): 413-9, 1992 Nov 01.
Article in English | MEDLINE | ID: mdl-1416972

ABSTRACT

The thermal stability of plastocyanin (PC) was determined as a function of oxidation state of the copper center and the presence of oxidants, reductants, oxygen, and EDTA. It was found that the copper center and its ligands play a crucial role in maintaining the stability of PC. Thermal denaturation was monitored by using far-uv circular dichroism (CD) spectra to monitor changes in secondary structure, the near-uv CD ellipticity at 280 nm to monitor changes in tertiary structure, and the absorbance at 597 nm and the 255-nm CD transition to monitor changes in the copper center. Reduced PC (Tm = 71 degrees C) was found to be more stable than the oxidized form (Tm = 61 degrees C). The Tm was increased by addition of reductants, removal of oxygen, or addition of EDTA. Two distinct denatured forms (designated D1 and D2) were separated by anion exchange fast protein liquid chromatography. Neither form contained a native copper center. Form D2 retained the characteristic 280-nm CD band but showed an altered far-uv CD spectrum. Its formation was inhibited by the addition of reductants or the removal of oxygen. It could be refolded to form native, Cu-PC upon incubation with copper plus a reductant such as dithionite. These results suggest that its formation involves the reversible oxidation of a group on the PC molecule, possibly a ligand to the copper such as Cys 84 or Met 92. Form D1 occurred in the presence of ferricyanide or at high temperatures in the presence of oxygen. EDTA inhibited its formation. Form D1 lost the 280-nm CD transition and its far-uv CD spectrum was altered. No renaturation was observed suggesting that Form D1 is the product of an irreversible oxidation step possibly involving a histidine ligand to the copper. Forms D1 and D2 are not interconvertible and represent the endpoints of two different denaturation pathways.


Subject(s)
Plastocyanin/chemistry , Anaerobiosis , Circular Dichroism , Drug Stability , Edetic Acid/pharmacology , Hot Temperature , Oxidants/pharmacology , Oxidation-Reduction , Plants/metabolism , Protein Conformation , Protein Denaturation , Spectrophotometry , Thermodynamics
2.
Plant Physiol ; 95(1): 222-7, 1991 Jan.
Article in English | MEDLINE | ID: mdl-16667955

ABSTRACT

By using a peptide (CK-15) based on the COOH-terminal sequence of nodulin-26, we have demonstrated the presence of a Ca(2+)-dependent protein kinase in soluble as well as particulate fractions of nitrogen-fixing soybean (Glycine max) root nodules. Substantial enzyme activity was found in symbiosome membranes. The soluble enzyme was purified 1570-fold. The enzyme was fractionated from endogenous calmodulin and yet was fully activated by Ca(2+) (K(0.5) = 0.4 micromolar) in the absence of exogenous calmodulin, phosphatidylserine and 1,2-dioleylglycerol, oleic acid, and platelet activating factor. CK-15 was used to generate a site-specific antibody to nodulin-26. The antibody reacted with a protein in the symbiosome membrane with an apparent molecular mass of 27,000 daltons, consistent with the molecular mass predicted for nodulin-26 from the deduced amino acid sequence. A symbiosome membrane protein with an identical electrophoretic mobility was phosphorylated in vitro in a Ca(2+)-dependent manner. Additionally, this symbiosome membrane protein was phosphorylated when nodules were incubated with (32)P-phosphate. Overall, the results show the existence of a Ca(2+)-dependent and calmodulin/lipid-independent enzyme in nitrogen-fixing soybean root nodules and suggest that nodulin-26 is a substrate for Ca(2+)-dependent phosphorylation.

SELECTION OF CITATIONS
SEARCH DETAIL
...