Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
1.
PLoS Genet ; 19(10): e1010972, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37812589

ABSTRACT

Reduced activity of the enzymes encoded by PHGDH, PSAT1, and PSPH causes a set of ultrarare, autosomal recessive diseases known as serine biosynthesis defects. These diseases present in a broad phenotypic spectrum: at the severe end is Neu-Laxova syndrome, in the intermediate range are infantile serine biosynthesis defects with severe neurological manifestations and growth deficiency, and at the mild end is childhood disease with intellectual disability. However, L-serine supplementation, especially if started early, can ameliorate and in some cases even prevent symptoms. Therefore, knowledge of pathogenic variants can improve clinical outcomes. Here, we use a yeast-based assay to individually measure the functional impact of 1,914 SNV-accessible amino acid substitutions in PSAT. Results of our assay agree well with clinical interpretations and protein structure-function relationships, supporting the inclusion of our data as functional evidence as part of the ACMG variant interpretation guidelines. We use existing ClinVar variants, disease alleles reported in the literature and variants present as homozygotes in the primAD database to define assay ranges that could aid clinical variant interpretation for up to 98% of the tested variants. In addition to measuring the functional impact of individual variants in yeast haploid cells, we also assay pairwise combinations of PSAT1 alleles that recapitulate human genotypes, including compound heterozygotes, in yeast diploids. Results from our diploid assay successfully distinguish the genotypes of affected individuals from those of healthy carriers and agree well with disease severity. Finally, we present a linear model that uses individual allele measurements to predict the biallelic function of ~1.8 million allele combinations corresponding to potential human genotypes. Taken together, our work provides an example of how large-scale functional assays in model systems can be powerfully applied to the study of ultrarare diseases.


Subject(s)
Brain Diseases , Microcephaly , Humans , Child , Saccharomyces cerevisiae/genetics , Brain Diseases/genetics , Microcephaly/genetics , Genotype , Serine
2.
Am J Hum Genet ; 110(5): 863-879, 2023 05 04.
Article in English | MEDLINE | ID: mdl-37146589

ABSTRACT

Deleterious mutations in the X-linked gene encoding ornithine transcarbamylase (OTC) cause the most common urea cycle disorder, OTC deficiency. This rare but highly actionable disease can present with severe neonatal onset in males or with later onset in either sex. Individuals with neonatal onset appear normal at birth but rapidly develop hyperammonemia, which can progress to cerebral edema, coma, and death, outcomes ameliorated by rapid diagnosis and treatment. Here, we develop a high-throughput functional assay for human OTC and individually measure the impact of 1,570 variants, 84% of all SNV-accessible missense mutations. Comparison to existing clinical significance calls, demonstrated that our assay distinguishes known benign from pathogenic variants and variants with neonatal onset from late-onset disease presentation. This functional stratification allowed us to identify score ranges corresponding to clinically relevant levels of impairment of OTC activity. Examining the results of our assay in the context of protein structure further allowed us to identify a 13 amino acid domain, the SMG loop, whose function appears to be required in human cells but not in yeast. Finally, inclusion of our data as PS3 evidence under the current ACMG guidelines, in a pilot reclassification of 34 variants with complete loss of activity, would change the classification of 22 from variants of unknown significance to clinically actionable likely pathogenic variants. These results illustrate how large-scale functional assays are especially powerful when applied to rare genetic diseases.


Subject(s)
Hyperammonemia , Ornithine Carbamoyltransferase Deficiency Disease , Ornithine Carbamoyltransferase , Humans , Amino Acid Substitution , Hyperammonemia/etiology , Hyperammonemia/genetics , Mutation, Missense/genetics , Ornithine Carbamoyltransferase/genetics , Ornithine Carbamoyltransferase Deficiency Disease/genetics , Ornithine Carbamoyltransferase Deficiency Disease/diagnosis , Ornithine Carbamoyltransferase Deficiency Disease/therapy
3.
bioRxiv ; 2023 Jan 27.
Article in English | MEDLINE | ID: mdl-36711904

ABSTRACT

Background: Pathogenic variants in PHGDH, PSAT1 , and PSPH cause a set of rare, autosomal recessive diseases known as serine biosynthesis defects. Serine biosynthesis defects present in a broad phenotypic spectrum that includes, at the severe end, Neu-Laxova syndrome, a lethal multiple congenital anomaly disease, intermediately in the form of infantile serine biosynthesis defects with severe neurological manifestations and growth deficiency, and at the mild end, as childhood disease with intellectual disability. However, because L-serine supplementation, especially if started early, can ameliorate and in some cases even prevent symptoms, knowledge of pathogenic variants is highly actionable. Methods: Recently, our laboratory established a yeast-based assay for human PSAT1 function. We have now applied it at scale to assay the functional impact of 1,914 SNV-accessible amino acid substitutions. In addition to assaying the functional impact of individual variants in yeast haploid cells, we can assay pairwise combinations of PSAT1 alleles that recapitulate human genotypes, including compound heterozygotes, in yeast diploids. Results: Results of our assays of individual variants (in haploid yeast cells) agree well with clinical interpretations and protein structure-function relationships, supporting the use of our data as functional evidence under the ACMG interpretation guidelines. Results from our diploid assay successfully distinguish patient genotypes from those of healthy carriers and agree well with disease severity. Finally, we present a linear model that uses individual allele measurements (in haploid yeast cells) to accurately predict the biallelic function (in diploid yeast cells) of ~ 1.8 million allele combinations corresponding to potential human genotypes. Conclusions: Taken together, our work provides an example of how large-scale functional assays in model systems can be powerfully applied to the study of a rare disease.

4.
Yeast ; 39(6-7): 354-362, 2022 06.
Article in English | MEDLINE | ID: mdl-35706372

ABSTRACT

Meiotic mapping, a linkage-based method for analyzing the recombinant progeny of a cross, has long been a cornerstone of genetic research. The yeast Saccharomyces cerevisiae is a powerful system because it is possible to isolate and cultivate the four products (spores) of a single meiotic event. However, the throughput of this process has historically been limited by the process of identifying tetrads in a heterogeneous population of vegetative cells, tetrads, and dyads followed by manual separation (dissection) of the spores contained in a tetrad. To date, methods that facilitate high throughput characterization and isolation of meiotic progeny have relied on genetic engineering. Here, we characterize the ability of the fluorescent dye DiBAC4 (5) to stain yeast tetrads and dyads as well as to adhere to spores following bulk tetrad disruption. Applications include quantitative assays of sporulation rates and efficiency by flow cytometry as well as enrichment of intact tetrads, dyads, or disrupted spores by fluorescence-activated cell sorting  in strains that have not been genetically modified.


Subject(s)
Meiosis , Saccharomyces cerevisiae , Flow Cytometry/methods , Saccharomyces cerevisiae/genetics , Spores, Fungal/genetics
5.
J Inherit Metab Dis ; 43(4): 758-769, 2020 07.
Article in English | MEDLINE | ID: mdl-32077105

ABSTRACT

Defects in serine biosynthesis resulting from loss of function mutations in PHGDH, PSAT1, and PSPH cause a set of rare, autosomal recessive diseases known as Neu-Laxova syndrome (NLS) or serine-deficiency disorders. The diseases present with a broad range of phenotypes including lethality, severe neurological manifestations, seizures, and intellectual disability. However, because L-serine supplementation, especially if started prenatally, can ameliorate and in some cases even prevent symptoms, knowledge of pathogenic variants is medically actionable. Here, we describe a functional assay that leverages the evolutionary conservation of an enzyme in the serine biosynthesis pathway, phosphoserine aminotransferase, and the ability of the human protein-coding sequence (PSAT1) to functionally replace its yeast ortholog (SER1). Results from our quantitative, yeast-based assay agree well with clinical annotations and expectations based on the disease literature. Using this assay, we have measured the functional impact of the 199 PSAT1 variants currently listed in ClinVar, gnomAD, and the literature. We anticipate that the assay could be used to comprehensively assess the functional impact of all SNP-accessible amino acid substitution mutations in PSAT1, a resource that could aid variant interpretation and identify potential NLS carriers.


Subject(s)
Abnormalities, Multiple/genetics , Brain Diseases/genetics , Fetal Growth Retardation/genetics , Ichthyosis/genetics , Limb Deformities, Congenital/genetics , Microcephaly/genetics , Phosphoglycerate Dehydrogenase/genetics , Abnormalities, Multiple/metabolism , Brain Diseases/metabolism , Fetal Growth Retardation/metabolism , Humans , Ichthyosis/metabolism , Limb Deformities, Congenital/metabolism , Microcephaly/metabolism , Mutation, Missense , Phenotype , Phosphoglycerate Dehydrogenase/deficiency , Saccharomyces cerevisiae/metabolism , Serine/biosynthesis
6.
PLoS Genet ; 15(5): e1008137, 2019 05.
Article in English | MEDLINE | ID: mdl-31091232

ABSTRACT

When the fungus Candida albicans proliferates in the oropharyngeal cavity during experimental oropharyngeal candidiasis (OPC), it undergoes large-scale genome changes at a much higher frequency than when it grows in vitro. Previously, we identified a specific whole chromosome amplification, trisomy of Chr6 (Chr6x3), that was highly overrepresented among strains recovered from the tongues of mice with OPC. To determine the functional significance of this trisomy, we assessed the virulence of two Chr6 trisomic strains and a Chr5 trisomic strain in the mouse model of OPC. We also analyzed the expression of virulence-associated traits in vitro. All three trisomic strains exhibited characteristics of a commensal during OPC in mice. They achieved the same oral fungal burden as the diploid progenitor strain but caused significantly less weight loss and elicited a significantly lower inflammatory host response. In vitro, all three trisomic strains had reduced capacity to adhere to and invade oral epithelial cells and increased susceptibility to neutrophil killing. Whole genome sequencing of pre- and post-infection isolates found that the trisomies were usually maintained. Most post-infection isolates also contained de novo point mutations, but these were not conserved. While in vitro growth assays did not reveal phenotypes specific to de novo point mutations, they did reveal novel phenotypes specific to each lineage. These data reveal that during OPC, clones that are trisomic for Chr5 or Chr6 are selected and they facilitate a commensal-like phenotype.


Subject(s)
Candida albicans/genetics , Candidiasis, Oral/genetics , Oropharynx/microbiology , Animals , Candida albicans/metabolism , Candidiasis/genetics , Disease Models, Animal , Epithelial Cells , Male , Mice , Mice, Inbred BALB C , Neutrophils , Phenotype , Trisomy/genetics , Virulence
7.
G3 (Bethesda) ; 9(7): 2071-2088, 2019 07 09.
Article in English | MEDLINE | ID: mdl-31109921

ABSTRACT

We describe an information-theory-based method and associated software for computationally identifying sister spores derived from the same meiotic tetrad. The method exploits specific DNA sequence features of tetrads that result from meiotic centromere and allele segregation patterns. Because the method uses only the genomic sequence, it alleviates the need for tetrad-specific barcodes or other genetic modifications to the strains. Using this method, strains derived from randomly arrayed spores can be efficiently grouped back into tetrads.


Subject(s)
Computational Biology/methods , Software , Yeasts/physiology , Alleles , Chromosome Segregation , Gene Expression Regulation, Fungal , Meiosis , Recombination, Genetic , Reproducibility of Results , Spores, Fungal
8.
PLoS Biol ; 17(3): e3000147, 2019 03.
Article in English | MEDLINE | ID: mdl-30835725

ABSTRACT

Strains of Saccharomyces cerevisiae used to make beer, bread, and wine are genetically and phenotypically distinct from wild populations associated with trees. The origins of these domesticated populations are not always clear; human-associated migration and admixture with wild populations have had a strong impact on S. cerevisiae population structure. We examined the population genetic history of beer strains and found that ale strains and the S. cerevisiae portion of allotetraploid lager strains were derived from admixture between populations closely related to European grape wine strains and Asian rice wine strains. Similar to both lager and baking strains, ale strains are polyploid, providing them with a passive means of remaining isolated from other populations and providing us with a living relic of their ancestral hybridization. To reconstruct their polyploid origin, we phased the genomes of two ale strains and found ale haplotypes to both be recombinants between European and Asian alleles and to also contain novel alleles derived from extinct or as yet uncharacterized populations. We conclude that modern beer strains are the product of a historical melting pot of fermentation technology.


Subject(s)
Polyploidy , Saccharomyces cerevisiae/genetics , Asia , Beer , Europe , Fermentation/physiology , Haplotypes/genetics , Saccharomyces cerevisiae/classification , Wine
9.
Proc Natl Acad Sci U S A ; 115(40): E9333-E9342, 2018 10 02.
Article in English | MEDLINE | ID: mdl-30217891

ABSTRACT

Viable gamete formation requires segregation of homologous chromosomes connected, in most species, by cross-overs. DNA double-strand break (DSB) formation and the resulting cross-overs are regulated at multiple levels to prevent overabundance along chromosomes. Meiotic cells coordinate these events between distant sites, but the physical basis of long-distance chromosomal communication has been unknown. We show that DSB hotspots up to ∼200 kb (∼35 cM) apart form clusters via hotspot-binding proteins Rec25 and Rec27 in fission yeast. Clustering coincides with hotspot competition and interference over similar distances. Without Tel1 (an ATM tumor-suppressor homolog), DSB and crossover interference become negative, reflecting coordinated action along a chromosome. These results indicate that DSB hotspots within a limited chromosomal region and bound by their protein determinants form a clustered structure that, via Tel1, allows only one DSB per region. Such a "roulette" process within clusters explains the observed pattern of crossover interference in fission yeast. Key structural and regulatory components of clusters are phylogenetically conserved, suggesting conservation of this vital regulation. Based on these observations, we propose a model and discuss variations in which clustering and competition between DSB sites leads to DSB interference and in turn produces crossover interference.


Subject(s)
Chromosomes, Fungal/metabolism , DNA Breaks, Double-Stranded , Meiosis , Nuclear Proteins/metabolism , Schizosaccharomyces pombe Proteins/metabolism , Schizosaccharomyces/metabolism , Chromosomes, Fungal/genetics , Nuclear Proteins/genetics , Schizosaccharomyces/genetics , Schizosaccharomyces pombe Proteins/genetics
10.
Genetics ; 209(3): 725-741, 2018 07.
Article in English | MEDLINE | ID: mdl-29724862

ABSTRACT

In vitro studies suggest that stress may generate random standing variation and that different cellular and ploidy states may evolve more rapidly under stress. Yet this idea has not been tested with pathogenic fungi growing within their host niche in vivo Here, we analyzed the generation of both genotypic and phenotypic diversity during exposure of Candida albicans to the mouse oral cavity. Ploidy, aneuploidy, loss of heterozygosity (LOH), and recombination were determined using flow cytometry and double digest restriction site-associated DNA sequencing. Colony phenotypic changes in size and filamentous growth were evident without selection and were enriched among colonies selected for LOH of the GAL1 marker. Aneuploidy and LOH occurred on all chromosomes (Chrs), with aneuploidy more frequent for smaller Chrs and whole Chr LOH more frequent for larger Chrs. Large genome shifts in ploidy to haploidy often maintained one or more heterozygous disomic Chrs, consistent with random Chr missegregation events. Most isolates displayed several different types of genomic changes, suggesting that the oral environment rapidly generates diversity de novo In sharp contrast, following in vitro propagation, isolates were not enriched for multiple LOH events, except in those that underwent haploidization and/or had high levels of Chr loss. The frequency of events was overall 100 times higher for C. albicans populations following in vivo passage compared with in vitro These hyper-diverse in vivo isolates likely provide C. albicans with the ability to adapt rapidly to the diversity of stress environments it encounters inside the host.


Subject(s)
Candida albicans/physiology , Candidiasis/microbiology , DNA, Fungal/genetics , Genetic Variation , Mouth/microbiology , Aneuploidy , Animals , Candida albicans/genetics , Candida albicans/isolation & purification , Fungal Proteins/genetics , Galactokinase/genetics , Gene Frequency , Genotype , Host-Pathogen Interactions , Loss of Heterozygosity , Male , Mice , Phenotype , Sequence Analysis, DNA
11.
G3 (Bethesda) ; 8(1): 239-251, 2018 01 04.
Article in English | MEDLINE | ID: mdl-29138237

ABSTRACT

Despite their ubiquitous use in laboratory strains, naturally occurring loss-of-function mutations in genes encoding core metabolic enzymes are relatively rare in wild isolates of Saccharomyces cerevisiae Here, we identify a naturally occurring serine auxotrophy in a sake brewing strain from Japan. Through a cross with a honey wine (white tecc) brewing strain from Ethiopia, we map the minimal medium growth defect to SER1, which encodes 3-phosphoserine aminotransferase and is orthologous to the human disease gene, PSAT1 To investigate the impact of this polymorphism under conditions of abundant external nutrients, we examine growth in rich medium alone or with additional stresses, including the drugs caffeine and rapamycin and relatively high concentrations of copper, salt, and ethanol. Consistent with studies that found widespread effects of different auxotrophies on RNA expression patterns in rich media, we find that the SER1 loss-of-function allele dominates the quantitative trait locus (QTL) landscape under many of these conditions, with a notable exacerbation of the effect in the presence of rapamycin and caffeine. We also identify a major-effect QTL associated with growth on salt that maps to the gene encoding the sodium exporter, ENA6 We demonstrate that the salt phenotype is largely driven by variation in the ENA6 promoter, which harbors a deletion that removes binding sites for the Mig1 and Nrg1 transcriptional repressors. Thus, our results identify natural variation associated with both coding and regulatory regions of the genome that underlie strong growth phenotypes.


Subject(s)
Gene Expression Regulation, Fungal , Genome, Fungal , Polymorphism, Genetic , Saccharomyces cerevisiae/genetics , Sodium-Potassium-Exchanging ATPase/genetics , Transaminases/genetics , Alcoholic Beverages/analysis , Caffeine/pharmacology , Copper/pharmacology , Culture Media/pharmacology , Ethanol/pharmacology , Fermentation , Humans , Molecular Sequence Annotation , Promoter Regions, Genetic , Quantitative Trait Loci , Repressor Proteins/genetics , Repressor Proteins/metabolism , Saccharomyces cerevisiae/drug effects , Saccharomyces cerevisiae/growth & development , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Salts/pharmacology , Sirolimus/pharmacology , Sodium-Potassium-Exchanging ATPase/deficiency , Transaminases/deficiency
12.
G3 (Bethesda) ; 7(8): 2845-2854, 2017 08 07.
Article in English | MEDLINE | ID: mdl-28673928

ABSTRACT

Biofilm formation by microorganisms is a major cause of recurring infections and removal of biofilms has proven to be extremely difficult given their inherent drug resistance . Understanding the biological processes that underlie biofilm formation is thus extremely important and could lead to the development of more effective drug therapies, resulting in better infection outcomes. Using the yeast Saccharomyces cerevisiae as a biofilm model, overexpression screens identified DIG1, SFL1, HEK2, TOS8, SAN1, and ROF1/YHR177W as regulators of biofilm formation. Subsequent RNA-seq analysis of biofilm and nonbiofilm-forming strains revealed that all of the overexpression strains, other than DIG1 and TOS8, were adopting a single differential expression profile, although induced to varying degrees. TOS8 adopted a separate profile, while the expression profile of DIG1 reflected the common pattern seen in most of the strains, plus substantial DIG1-specific expression changes. We interpret the existence of the common transcriptional pattern seen across multiple, unrelated overexpression strains as reflecting a transcriptional state, that the yeast cell can access through regulatory signaling mechanisms, allowing an adaptive morphological change between biofilm-forming and nonbiofilm states.


Subject(s)
Biofilms , Gene Expression Profiling , Genetic Testing , Saccharomyces cerevisiae/genetics , Gene Deletion , Gene Expression Regulation, Fungal , MAP Kinase Signaling System/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA, Untranslated/genetics , Transcription Factors/metabolism
13.
G3 (Bethesda) ; 7(1): 233-246, 2017 01 05.
Article in English | MEDLINE | ID: mdl-27836908

ABSTRACT

Aneuploidy, a state in which the chromosome number deviates from a multiple of the haploid count, significantly impacts human health. The phenotypic consequences of aneuploidy are believed to arise from gene expression changes associated with the altered copy number of genes on the aneuploid chromosomes. To dissect the mechanisms underlying altered gene expression in aneuploids, we used RNA-seq to measure transcript abundance in colonies of the haploid Saccharomyces cerevisiae strain F45 and two aneuploid derivatives harboring disomies of chromosomes XV and XVI. F45 colonies display complex "fluffy" morphologies, while the disomic colonies are smooth, resembling laboratory strains. Our two disomes displayed similar transcriptional profiles, a phenomenon not driven by their shared smooth colony morphology nor simply by their karyotype. Surprisingly, the environmental stress response (ESR) was induced in F45, relative to the two disomes. We also identified genes whose expression reflected a nonlinear interaction between the copy number of a transcriptional regulatory gene on chromosome XVI, DIG1, and the copy number of other chromosome XVI genes. DIG1 and the remaining chromosome XVI genes also demonstrated distinct contributions to the effect of the chromosome XVI disome on ESR gene expression. Expression changes in aneuploids appear to reflect a mixture of effects shared between different aneuploidies and effects unique to perturbing the copy number of particular chromosomes, including nonlinear copy number interactions between genes. The balance between these two phenomena is likely to be genotype- and environment-specific.


Subject(s)
Aneuploidy , Gene Expression Regulation/genetics , Saccharomyces cerevisiae/genetics , Stress, Physiological/genetics , Chromosomes, Fungal/genetics , Gene Dosage/genetics , Haploidy , Humans , Karyotype
14.
Curr Biol ; 26(7): 965-71, 2016 Apr 04.
Article in English | MEDLINE | ID: mdl-27020745

ABSTRACT

Modern transportation networks have facilitated the migration and mingling of previously isolated populations of plants, animals, and insects. Human activities can also influence the global distribution of microorganisms. The best-understood example is yeasts associated with winemaking. Humans began making wine in the Middle East over 9,000 years ago [1, 2]. Selecting favorable fermentation products created specialized strains of Saccharomyces cerevisiae [3, 4] that were transported along with grapevines. Today, S. cerevisiae strains residing in vineyards around the world are genetically similar, and their population structure suggests a common origin that followed the path of human migration [3-7]. Like wine, coffee and cacao depend on microbial fermentation [8, 9] and have been globally dispersed by humans. Theobroma cacao originated in the Amazon and Orinoco basins of Colombia and Venezuela [10], was cultivated in Central America by Mesoamerican peoples, and was introduced to Europeans by Hernán Cortés in 1530 [11]. Coffea, native to Ethiopia, was disseminated by Arab traders throughout the Middle East and North Africa in the 6(th) century and was introduced to European consumers in the 17(th) century [12]. Here, we tested whether the yeasts associated with coffee and cacao are genetically similar, crop-specific populations or genetically diverse, geography-specific populations. Our results uncovered populations that, while defined by niche and geography, also bear signatures of admixture between major populations in events independent of the transport of the plants. Thus, human-associated fermentation and migration may have affected the distribution of yeast involved in the production of coffee and chocolate.


Subject(s)
Cacao/microbiology , Coffee/microbiology , Saccharomyces cerevisiae/classification , Saccharomyces cerevisiae/isolation & purification , Fermentation , Geography , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Transportation
15.
Curr Biol ; 25(17): R771-3, 2015 Aug 31.
Article in English | MEDLINE | ID: mdl-26325142

ABSTRACT

Individuals, and cells, vary in their ability to tolerate aneuploidy, an unbalanced chromosome complement. Tolerance mechanisms can be karyotype-specific or general. General tolerance mechanisms may allow cells to benefit from the phenotypic plasticity conferred by access to multiple aneuploid states.


Subject(s)
Aneuploidy , Dosage Compensation, Genetic , Gene Dosage , Genes, Fungal , Models, Genetic , Saccharomyces cerevisiae/genetics
16.
Genetics ; 199(1): 247-62, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25398792

ABSTRACT

Clinically relevant features of monogenic diseases, including severity of symptoms and age of onset, can vary widely in response to environmental differences as well as to the presence of genetic modifiers affecting the trait's penetrance and expressivity. While a better understanding of modifier loci could lead to treatments for Mendelian diseases, the rarity of individuals harboring both a disease-causing allele and a modifying genotype hinders their study in human populations. We examined the genetic architecture of monogenic trait modifiers using a well-characterized yeast model of the human Mendelian disease classic galactosemia. Yeast strains with loss-of-function mutations in the yeast ortholog (GAL7) of the human disease gene (GALT) fail to grow in the presence of even small amounts of galactose due to accumulation of the same toxic intermediates that poison human cells. To isolate and individually genotype large numbers of the very rare (∼0.1%) galactose-tolerant recombinant progeny from a cross between two gal7Δ parents, we developed a new method, called "FACS-QTL." FACS-QTL improves upon the currently used approaches of bulk segregant analysis and extreme QTL mapping by requiring less genome engineering and strain manipulation as well as maintaining individual genotype information. Our results identified multiple distinct solutions by which the monogenic trait could be suppressed, including genetic and nongenetic mechanisms as well as frequent aneuploidy. Taken together, our results imply that the modifiers of monogenic traits are likely to be genetically complex and heterogeneous.


Subject(s)
Aneuploidy , Genes, Modifier , Genetic Variation , Quantitative Trait Loci , Saccharomyces cerevisiae/genetics , Alleles , Chromosome Mapping/methods , Galactose/metabolism , Galectins/deficiency , Galectins/genetics
17.
J Vis Exp ; (87)2014 May 01.
Article in English | MEDLINE | ID: mdl-24836713

ABSTRACT

Tetrad analysis is a valuable tool for yeast genetics, but the laborious manual nature of the process has hindered its application on large scales. Barcode Enabled Sequencing of Tetrads (BEST)1 replaces the manual processes of isolating, disrupting and spacing tetrads. BEST isolates tetrads by virtue of a sporulation-specific GFP fusion protein that permits fluorescence-activated cell sorting of tetrads directly onto agar plates, where the ascus is enzymatically digested and the spores are disrupted and randomly arrayed by glass bead plating. The haploid colonies are then assigned sister spore relationships, i.e. information about which spores originated from the same tetrad, using molecular barcodes read during genotyping. By removing the bottleneck of manual dissection, hundreds or even thousands of tetrads can be isolated in minutes. Here we present a detailed description of the experimental procedures required to perform BEST in the yeast Saccharomyces cerevisiae, starting with a heterozygous diploid strain through the isolation of colonies derived from the haploid meiotic progeny.


Subject(s)
DNA Barcoding, Taxonomic/methods , High-Throughput Nucleotide Sequencing/methods , Saccharomyces cerevisiae/genetics , DNA, Fungal/genetics , Diploidy , Flow Cytometry/instrumentation , Flow Cytometry/methods , Haploidy , High-Throughput Nucleotide Sequencing/instrumentation , Meiosis/genetics , Saccharomyces cerevisiae/chemistry
18.
G3 (Bethesda) ; 3(12): 2163-71, 2013 Dec 09.
Article in English | MEDLINE | ID: mdl-24122055

ABSTRACT

The budding yeast Saccharomyces cerevisiae is important for human food production and as a model organism for biological research. The genetic diversity contained in the global population of yeast strains represents a valuable resource for a number of fields, including genetics, bioengineering, and studies of evolution and population structure. Here, we apply a multiplexed, reduced genome sequencing strategy (restriction site-associated sequencing or RAD-seq) to genotype a large collection of S. cerevisiae strains isolated from a wide range of geographical locations and environmental niches. The method permits the sequencing of the same 1% of all genomes, producing a multiple sequence alignment of 116,880 bases across 262 strains. We find diversity among these strains is principally organized by geography, with European, North American, Asian, and African/S. E. Asian populations defining the major axes of genetic variation. At a finer scale, small groups of strains from cacao, olives, and sake are defined by unique variants not present in other strains. One population, containing strains from a variety of fermentations, exhibits high levels of heterozygosity and a mixture of alleles from European and Asian populations, indicating an admixed origin for this group. We propose a model of geographic differentiation followed by human-associated admixture, primarily between European and Asian populations and more recently between European and North American populations. The large collection of genotyped yeast strains characterized here will provide a useful resource for the broad community of yeast researchers.


Subject(s)
Genetic Variation , Genome, Fungal , Saccharomyces cerevisiae/genetics , Sequence Analysis, DNA/methods , Genetics, Population , Heterozygote , Phylogeography
19.
Proc Natl Acad Sci U S A ; 110(30): 12367-72, 2013 Jul 23.
Article in English | MEDLINE | ID: mdl-23812752

ABSTRACT

Although microorganisms are traditionally used to investigate unicellular processes, the yeast Saccharomyces cerevisiae has the ability to form colonies with highly complex, multicellular structures. Colonies with the "fluffy" morphology have properties reminiscent of bacterial biofilms and are easily distinguished from the "smooth" colonies typically formed by laboratory strains. We have identified strains that are able to reversibly toggle between the fluffy and smooth colony-forming states. Using a combination of flow cytometry and high-throughput restriction-site associated DNA tag sequencing, we show that this switch is correlated with a change in chromosomal copy number. Furthermore, the gain of a single chromosome is sufficient to switch a strain from the fluffy to the smooth state, and its subsequent loss to revert the strain back to the fluffy state. Because copy number imbalance of six of the 16 S. cerevisiae chromosomes and even a single gene can modulate the switch, our results support the hypothesis that the state switch is produced by dosage-sensitive genes, rather than a general response to altered DNA content. These findings add a complex, multicellular phenotype to the list of molecular and cellular traits known to be altered by aneuploidy and suggest that chromosome missegregation can provide a quick, heritable, and reversible mechanism by which organisms can toggle between phenotypes.


Subject(s)
Aneuploidy , Saccharomyces cerevisiae/genetics , Chromosomes, Fungal , Gene Dosage , Phenotype
20.
Nat Methods ; 10(7): 671-5, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23666411

ABSTRACT

Tetrad analysis has been a gold-standard genetic technique for several decades. Unfortunately, the need to manually isolate, disrupt and space tetrads has relegated its application to small-scale studies and limited its integration with high-throughput DNA sequencing technologies. We have developed a rapid, high-throughput method, called barcode-enabled sequencing of tetrads (BEST), that uses (i) a meiosis-specific GFP fusion protein to isolate tetrads by FACS and (ii) molecular barcodes that are read during genotyping to identify spores derived from the same tetrad. Maintaining tetrad information allows accurate inference of missing genetic markers and full genotypes of missing (and presumably nonviable) individuals. An individual researcher was able to isolate over 3,000 yeast tetrads in 3 h, an output equivalent to that of almost 1 month of manual dissection. BEST is transferable to other microorganisms for which meiotic mapping is significantly more laborious.


Subject(s)
Algorithms , Chromosome Mapping/methods , DNA, Fungal/genetics , Genetic Markers/genetics , High-Throughput Nucleotide Sequencing/methods , Meiosis/genetics , Saccharomyces cerevisiae/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...