Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nucleic Acids Res ; 30(21): 4803-11, 2002 Nov 01.
Article in English | MEDLINE | ID: mdl-12409471

ABSTRACT

Reverse transcription of hepatitis B virus (HBV) pregenomic RNA is essential for virus replication. In the first step of this process, HBV reverse transcriptase binds to the highly conserved encapsidation signal, epsilon (epsilon), situated near the 5' end of the pregenome. epsilon has been predicted to form a bulged stem-loop with the apical stem capped by a hexa- loop. After the initial binding to this apical stem- loop, the reverse transcriptase synthesizes a 4 nt primer using the bulge as a template. Here we present mutational and structural data from NMR on the apical stem-loop of epsilon. Application of new isotope-labeling techniques (13C/15N/2H-U-labeling) allowed resolution of many resonance overlaps and an extensive structural data set could be derived. The NMR data show that, instead of the predicted hexa-loop, the apical stem is capped by a stable UGU tri-loop closed by a C-G base pair, followed by a bulged out C. The apical stem contains therefore two unpaired pyrimidines (C1882 and U1889), rather than one as was predicted, spaced by 6 nt. C1882, the 3' neighbour to the G of the loop-closing C-G base pair, is completely bulged out, while U1889 is at least partially intercalated into the stem. Analysis of 205 of our own HBV sequences and 1026 strains from the literature, covering all genotypes, reveals a high degree of conservation of epsilon. In particular, the residues essential for this fold are either totally conserved or show rare non-disruptive mutations. These data strongly indicate that this fold is essential for recognition by the reverse transcriptase.


Subject(s)
Hepatitis B virus/genetics , Nucleic Acid Conformation , Pyrimidines/metabolism , RNA, Viral/chemistry , RNA, Viral/metabolism , Base Pairing , Base Sequence , Genome, Viral , Genotype , Hepatitis B virus/classification , Hepatitis B virus/enzymology , Humans , Mutation , Nuclear Magnetic Resonance, Biomolecular , RNA, Viral/genetics , RNA-Directed DNA Polymerase/metabolism , Substrate Specificity , Uridine/metabolism
2.
Nucleic Acids Res ; 30(7): 1639-45, 2002 Apr 01.
Article in English | MEDLINE | ID: mdl-11917025

ABSTRACT

An effective in vitro enzymatic synthesis is described for the production of nucleoside triphosphates (NTPs) which are stereo-specifically deuterated on the H5" position with high selectivity (>98%), and which can have a variety of different labels (13C, 15N, 2H) in other positions. The NTPs can subsequently be employed in the enzymatic synthesis of RNAs using T7 polymerase from a DNA template. The stereo-specific deuteration of the H5" immediately provides the stereo-specific assignment of H5' resonances in NMR spectra, giving access to important structural parameters. Stereo-chemical H-exchange was used to convert commercially available 1,2,3,4,5,6,6-2H-1,2,3,4,5,6-13C-D-glucose (d7-13C6-D-glucose) into [1,2,3,4,5,6(R)-2H-1,2,3,4,5,6-13C]-D-glucose (d6-13C6-D-glucose). [1',3',4',5"-2H-1',2',3',4',5'-13C]GTP (d4-13C5-GTP) was then produced from d6-13C6-D-glucose and guanine base via in vitro enzymatic synthesis employing enzymes from the pentose-phosphate, nucleotide biosynthesis and salvage pathways. The overall yield was approximately 60 mg NTP per 1 g glucose, comparable with the yield of NTPs isolated from Escherichia coli grown on enriched media. The d4-13C5-GTP, together with in vitro synthesised d5-UTP, d5-CTP and non-labelled ATP, were used in the synthesis of a 31 nt RNA derived from the primer binding site of hepatitis B virus genomic RNA. (13C,1H) hetero-nuclear multiple-quantum spectra of the specifically deuterated sample and of a non-deuterated uniformly 13C/15N-labelled sample demonstrates the reduced spectral crowding and line width narrowing compared with 13C-labelled non-deuterated RNA.


Subject(s)
Magnetic Resonance Spectroscopy/methods , RNA/chemistry , Carbon Isotopes/chemistry , Deuterium/chemistry , Hepatitis B virus/genetics , Isotope Labeling , Oligoribonucleotides/chemistry , Oligoribonucleotides/genetics , RNA/genetics , Ribonucleotides/chemistry , Ribonucleotides/genetics
3.
J Biomol Struct Dyn ; 19(4): 627-36, 2002 Feb.
Article in English | MEDLINE | ID: mdl-11843624

ABSTRACT

Hepatitis B virus (HBV) HBV is DNA virus with a unique replication strategy, which involves reverse transcription of its pregenomic RNA. Essential for this reverse transcription are the 5'- and 3'-ends of its pregenomic RNA (5'-RT-RNA and 3'-RT-RNA, respectively) which form conserved bulged stem-loop structures. The 5'-RT-RNA consists of a 67 nucleotide bulged stem-loop structure, epsilon, which constitutes the signal for encapsidation of the pregenomic RNA and subsequent reverse transcription. The reverse transcriptase (RT) initially binds to the completely conserved apical loop of epsilon and a 4-nucleotide primer is synthesized from the adjacent 6-nucleotide bulge. Structural studies of epsilon can provide important parameters required for the design of RNA targeted anti- viral drugs directed against Hepatitis B virus. NMR studies of large RNA systems (> ca. 50 nucleotides) require novel approaches, e.g., different labeling schemes and reduction of the system into separate structural building blocks. Recently, a new method of synthesizing (13)C/(15)N/(2)H labeled nucleotides has been developed based on converting specifically labeled glucose and bases into nucleotides by using enzymes from the pentose phosphate pathway and nucleotide and salvage pathways. These NTPs give a large freedom in designing different labeling patterns in in vitro synthesized RNAs under study for NMR. This opens up the way for NMR studies of RNAs that are considerably above the present size limit (up to 150 nucleotides). Here this new technique is applied for structural studies on 27, 36 and 61 nucleotides long RNA fragments, mimicking different regions of epsilon.


Subject(s)
Capsid/chemistry , Hepatitis B virus/chemistry , RNA, Viral/chemistry , RNA-Directed DNA Polymerase/metabolism , Base Sequence , DNA Replication , Hepatitis B virus/genetics , Hepatitis B virus/physiology , Magnetic Resonance Spectroscopy , Molecular Sequence Data , Nucleic Acid Conformation , RNA, Viral/genetics , RNA-Directed DNA Polymerase/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...