Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Neuropharmacology ; 39(13): 2543-60, 2000 Oct.
Article in English | MEDLINE | ID: mdl-11044726

ABSTRACT

HEK293 cells were stably transfected with the cDNAs encoding full-length human neuronal nicotinic acetylcholine receptor (nAChR) subunit combinations alpha3beta2 or alpha4beta2. [(3)H]-(+/-)Epibatidine ([(3)H]-(+/-)EPI) bound to membranes from A3B2 (alpha3beta2) and A4B2.2 (alpha4beta2) cells with K(d) values of 7.5 and 33.4 pM and B(max) values of 497 and 1564 fmol/mg protein, respectively. Concentration-dependent increases in intracellular free Ca(2+) concentration were elicited by nAChR agonists with a rank order of potency of EPI>1,1-dimethyl-4-phenylpiperazinium (DMPP)>nicotine (NIC)=suberyldicholine (SUB)>cytisine (CYT)=acetylcholine (ACh) for A3B2 cells and EPI>CYT=SUB=NIC=DMPP>ACh for A4B2.2 cells. Antagonists of nAChRs blocked NIC-induced responses with a rank order of potency of d-tubocurarine (d-Tubo)=mecamylamine (MEC)>dihydro-beta-erythroidine (DHbetaE) in A3B2 cells and MEC=DHbetaE>d-Tubo in A4B2.2 cells. Whole-cell patch clamp recordings indicate that the decay rate of macroscopic ACh-induced currents is faster in A3B2 than in A4B2.2 cells and that A3B2 cells are less sensitive to ACh than A4B2.2 cells. ACh currents elicited in alpha3beta2 and alpha4beta2 human nAChRs are maximally potentiated at 20 and 2 mM external Ca(2+), respectively. Our results indicate that stably expressed alpha3beta2 and alpha4beta2 human nAChRs are pharmacologically and functionally distinct.


Subject(s)
Receptors, Nicotinic/metabolism , Blotting, Northern , Blotting, Western , Calcium/metabolism , Cell Line , Electric Stimulation , Electrophysiology , Humans , Kidney/metabolism , Ligands , Membranes/drug effects , Membranes/metabolism , Nicotinic Agonists/pharmacology , Patch-Clamp Techniques , RNA/biosynthesis , RNA/isolation & purification , Radioligand Assay , Receptors, Nicotinic/drug effects , Receptors, Nicotinic/genetics , Recombinant Proteins/chemistry
2.
J Biol Chem ; 275(50): 39482-6, 2000 Dec 15.
Article in English | MEDLINE | ID: mdl-11010960

ABSTRACT

Neuromedin U is a neuropeptide prominently expressed in the upper gastrointestinal tract and central nervous system. Recently, GPR66/FM-3 (NmU-R1) was identified as a specific receptor for neuromedin U. A BLAST search of the GenBank(TM) genomic database using the NmU-R1 cDNA sequence revealed a human genomic fragment encoding a G protein-coupled receptor that we designated NmU-R2 based on its homology to NmU-R1. The full-length NmU-R2 cDNA was subsequently cloned, stably expressed in 293 cells, and shown to mobilize intracellular calcium in response to neuromedin U. This response was dose-dependent (EC(50) = 5 nm) and specific in that other neuromedins did not induce a calcium flux in receptor-transfected cells. Expression analysis of human NmU-R2 demonstrated its mRNA to be most highly expressed in central nervous system tissues. Based on these data, we conclude that NmU-R2 is a novel neuromedin U receptor subtype that is likely to mediate central nervous system-specific neuromedin U effects.


Subject(s)
Central Nervous System/metabolism , Membrane Proteins , Receptors, Neurotransmitter/biosynthesis , Receptors, Neurotransmitter/chemistry , Amino Acid Sequence , Animals , Autoradiography , Blotting, Northern , Calcium/metabolism , Cloning, Molecular , DNA, Complementary/metabolism , Databases, Factual , Dose-Response Relationship, Drug , Humans , Ligands , Mice , Molecular Sequence Data , Neuropeptides/biosynthesis , Neuropeptides/chemistry , RNA, Messenger/metabolism , Receptors, Neurotransmitter/genetics , Sequence Homology, Amino Acid , Time Factors , Tissue Distribution
3.
J Pharmacol Exp Ther ; 284(2): 777-89, 1998 Feb.
Article in English | MEDLINE | ID: mdl-9454827

ABSTRACT

Human embryonic kidney (HEK293) cells were transfected with cDNA encoding the human beta4 neuronal nicotinic acetylcholine (ACh) receptor subunit in pairwise combination with human alpha2, alpha3 or alpha4 subunits. Cell lines A2B4, A3B4.2 and A4B4 were identified that stably express mRNA and protein corresponding to alpha2 and beta4, to alpha3 and beta4 and to alpha4 and beta4 subunits, respectively. Specific binding of [3H]epibatidine was detected in A2B4, A3B4.2 and A4B4 cells with Kd (mean +/- S.D. in pM) values of 42 +/- 10, 230 +/- 12 and 187 +/- 29 and with Bmax (fmol/mg protein) values of 1104 +/- 338, 2010 +/- 184 and 3683 +/- 1450, respectively. Whole-cell patch-clamp recordings in each cell line demonstrated that (-)nicotine (Nic), ACh, cytisine (Cyt) and 1, 1-dimethyl-4-phenylpiperazinium iodide (DMPP) elicit transient inward currents. The current-voltage (I-V) relation of these currents showed strong inward rectification. Pharmacological characterization of agonist-induced elevations of intracellular free Ca++ concentration revealed a distinct rank order of agonist potency for each subunit combination as follows: alpha2beta4, (+)epibatidine (Epi) > Cyt > suberyldicholine (Sub) = Nic = DMPP; alpha3beta4, Epi > DMPP = Cyt = Nic = Sub; alpha4beta4, Epi > Cyt = Sub > Nic > DMPP. The noncompetitive antagonists mecamylamine and d-tubocurarine did not display subtype selectivity. In contrast, the Kb value for the competitive antagonist dihydro-beta-erythroidine (DHbetaE) was highest at alpha3beta4 compared with alpha2beta4 or alpha4beta4 receptors. These data illustrate that the A2B4, A3B4.2 and A4B4 stable cell lines are powerful tools for examining the functional and pharmacological properties of human alpha2beta4, alpha3beta4 and alpha4beta4 neuronal nicotinic receptors.


Subject(s)
Receptors, Nicotinic/chemistry , Bridged Bicyclo Compounds, Heterocyclic/metabolism , Calcium/metabolism , Cell Line , Humans , Membrane Potentials/drug effects , Nicotinic Agonists/pharmacology , Nicotinic Antagonists/pharmacology , Patch-Clamp Techniques , Pyridines/metabolism , RNA, Messenger/genetics , Radioligand Assay , Receptors, Nicotinic/drug effects , Recombinant Proteins , Structure-Activity Relationship
4.
J Pharmacol Exp Ther ; 280(1): 346-56, 1997 Jan.
Article in English | MEDLINE | ID: mdl-8996215

ABSTRACT

Human neuronal nicotinic acetylcholine receptors (nAChRs) h alpha 2 beta 2, h alpha 2 beta 4, h alpha 3 beta 2, h alpha 3 beta 4, h alpha 4 beta 2, h alpha 4 beta 4 and h alpha 7 were expressed in Xenopus oocytes and tested for their sensitivities to the nicotinic agonists acetylcholine (ACh), nicotine, cytisine (CYT) and 1,1-dimethyl-4-phenylpiperazinium (DMPP) and the nAChR. antagonists mecamylamine (MEC), d-tubocurarine and dihydro-beta-erythroidine. CYT was the least efficacious agonist at hnAChRs containing beta 2 subunits, but it displayed significant activity at h alpha 2 beta 4, h alpha 3 beta 4, h alpha 4 beta 4 and h alpha 7 nAChRs. ACh was one of the most efficacious agonists at all hnAChRs, except at h alpha 3 beta 2, where DMPP was markedly more efficacious than ACh. ACh was among the least potent agonists at all hnAChRs. The rank order of potency displayed by h alpha 3 beta 2 and h alpha 3 beta 4 nAChRs (DMPP approximately CYT approximately nicotine > ACh and DMPP > CYT approximately nicotine > ACh, respectively), differs from that reported for their rat homologs (Luetje and Patrick, 1991; Covernton et al., 1994). The agonist profile observed in h alpha 7 also differs from that reported for its rat homolog (Seguela et al., 1993). Human alpha 4 beta 2 and h alpha 4 beta 4 nAChRs were more sensitive to dihydro-beta-erythroidine than d-tubocurarine, whereas h alpha 7 and h alpha 3 beta 4 were more sensitive to d-tubocurarine than dihydro-beta-erythroidine. These antagonists were equipotent at h alpha 2 beta 2, h alpha 3 beta 2 and h alpha 2 beta 4 nAChRs. MEC (3 microM) inhibited h alpha 2 beta 4 and h alpha 4 beta 4 nAChRs by > 80%, whereas h alpha 2 beta 2, h alpha 4 beta 2 and h alpha 7 nAChRs were inhibited by approximately 50%. Taken together, the differential sensitivities observed at various recombinant hnAChR subtypes indicate that both alpha and beta subunits contribute to the pharmacology of these ligand-gated channels. The unique selectivity profiles displayed by human nAChRs constitute a valuable tool for the development of selective nicotinic analogs as potential therapeutic drugs.


Subject(s)
Receptors, Nicotinic/drug effects , Animals , Dose-Response Relationship, Drug , Female , Humans , Nicotinic Agonists/pharmacology , Nicotinic Antagonists/pharmacology , Oocytes/metabolism , Receptors, Nicotinic/classification , Recombinant Proteins/drug effects , Xenopus laevis
SELECTION OF CITATIONS
SEARCH DETAIL
...