Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Front Hum Neurosci ; 15: 590251, 2021.
Article in English | MEDLINE | ID: mdl-33776665

ABSTRACT

Deep brain stimulation (DBS) of the subthalamic nucleus (STN) is a clinically effective tool for treating medically refractory Parkinson's disease (PD), but its neural mechanisms remain debated. Previous work has demonstrated that STN DBS results in evoked potentials (EPs) in the primary motor cortex (M1), suggesting that modulation of cortical physiology may be involved in its therapeutic effects. Due to technical challenges presented by high-amplitude DBS artifacts, these EPs are often measured in response to low-frequency stimulation, which is generally ineffective at PD symptom management. This study aims to characterize STN-to-cortex EPs seen during clinically relevant high-frequency STN DBS for PD. Intraoperatively, we applied STN DBS to 6 PD patients while recording electrocorticography (ECoG) from an electrode strip over the ipsilateral central sulcus. Using recently published techniques, we removed large stimulation artifacts to enable quantification of STN-to-cortex EPs. Two cortical EPs were observed - one synchronized with DBS onset and persisting during ongoing stimulation, and one immediately following DBS offset, here termed the "start" and the "end" EPs respectively. The start EP is, to our knowledge, the first long-latency cortical EP reported during ongoing high-frequency DBS. The start and end EPs differ in magnitude (p < 0.05) and latency (p < 0.001), and the end, but not the start, EP magnitude has a significant relationship (p < 0.001, adjusted for random effects of subject) to ongoing high gamma (80-150 Hz) power during the EP. These contrasts may suggest mechanistic or circuit differences in EP production during the two time periods. This represents a potential framework for relating DBS clinical efficacy to the effects of a variety of stimulation parameters on EPs.

2.
Mov Disord ; 35(12): 2348-2353, 2020 12.
Article in English | MEDLINE | ID: mdl-32914888

ABSTRACT

BACKGROUND: Converging literatures suggest that deep brain stimulation (DBS) in Parkinson's disease affects multiple circuit mechanisms. One proposed mechanism is the normalization of primary motor cortex (M1) pathophysiology via effects on the hyperdirect pathway. OBJECTIVES: We hypothesized that DBS would reduce the current intensity necessary to modulate motor-evoked potentials from focally applied direct cortical stimulation (DCS). METHODS: Intraoperative subthalamic DBS, DCS, and preoperative diffusion tensor imaging data were acquired in 8 patients with Parkinson's disease. RESULTS: In 7 of 8 patients, DBS significantly reduced the M1 DCS current intensity required to elicit motor-evoked potentials. This neuromodulation was specific to select DBS bipolar configurations. In addition, the volume of activated tissue models of these configurations were significantly associated with overlap of the hyperdirect pathway. CONCLUSIONS: DBS reduces the current necessary to elicit a motor-evoked potential using DCS. This supports a circuit mechanism of DBS effectiveness, potentially involving the hyperdirect pathway that speculatively may underlie reductions in hypokinetic abnormalities in Parkinson's disease. © 2020 International Parkinson and Movement Disorder Society.


Subject(s)
Deep Brain Stimulation , Motor Cortex , Parkinson Disease , Subthalamic Nucleus , Diffusion Tensor Imaging , Humans , Parkinson Disease/therapy
3.
Sci Rep ; 9(1): 20317, 2019 Dec 27.
Article in English | MEDLINE | ID: mdl-31882720

ABSTRACT

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

4.
Sci Rep ; 9(1): 3292, 2019 03 01.
Article in English | MEDLINE | ID: mdl-30824821

ABSTRACT

Direct cortical stimulation (DCS) of primary somatosensory cortex (S1) could help restore sensation and provide task-relevant feedback in a neuroprosthesis. However, the psychophysics of S1 DCS is poorly studied, including any comparison to cutaneous haptic stimulation. We compare the response times to DCS of human hand somatosensory cortex through electrocorticographic grids with response times to haptic stimuli delivered to the hand in four subjects. We found that subjects respond significantly slower to S1 DCS than to natural, haptic stimuli for a range of DCS train durations. Median response times for haptic stimulation varied from 198 ms to 313 ms, while median responses to reliably perceived DCS ranged from 254 ms for one subject, all the way to 528 ms for another. We discern no significant impact of learning or habituation through the analysis of blocked trials, and find no significant impact of cortical stimulation train duration on response times. Our results provide a realistic set of expectations for latencies with somatosensory DCS feedback for future neuroprosthetic applications and motivate the study of neural mechanisms underlying human perception of somatosensation via DCS.


Subject(s)
Evoked Potentials, Somatosensory/physiology , Reaction Time/physiology , Somatosensory Cortex/physiology , Touch Perception/physiology , Touch/physiology , Adult , Female , Humans , Male
5.
Cereb Cortex ; 29(3): 1328-1341, 2019 03 01.
Article in English | MEDLINE | ID: mdl-30496342

ABSTRACT

Over the past decade, numerous neuroimaging studies based on hemodynamic markers of brain activity have examined the feeling of body ownership using perceptual body-illusions in humans. However, the direct electrophysiological correlates of body ownership at the cortical level remain unexplored. To address this, we studied the rubber hand illusion in 5 patients (3 males and 2 females) implanted with intracranial electrodes measuring cortical surface potentials. Increased high-γ (70-200 Hz) activity, an index of neuronal firing rate, in premotor and intraparietal cortices reflected the feeling of ownership. In both areas, high-γ increases were intimately coupled with the subjective illusion onset and sustained both during and in-between touches. However, intraparietal activity was modulated by tactile stimulation to a higher degree than the premotor cortex through effective connectivity with the hand-somatosensory cortex, which suggests different functional roles. These findings constitute the first intracranial electrophysiological characterization of the rubber hand illusion and extend our understanding of the dynamic mechanisms of body ownership.


Subject(s)
Body Image , Cerebral Cortex/physiology , Neurons/physiology , Adolescent , Adult , Female , Gamma Rhythm , Hand/physiology , Humans , Illusions , Male , Motor Cortex/physiology , Parietal Lobe/physiology , Physical Stimulation , Somatosensory Cortex/physiology , Touch Perception/physiology , Young Adult
6.
IEEE Trans Haptics ; 9(4): 515-522, 2016.
Article in English | MEDLINE | ID: mdl-27429448

ABSTRACT

Cortical stimulation through electrocorticographic (ECoG) electrodes is a potential method for providing sensory feedback in future prosthetic and rehabilitative applications. Here, we evaluate human subjects' ability to continuously modulate their motor behavior based on feedback from direct surface stimulation of the somatosensory cortex. Subjects wore a dataglove that measured their hand aperture position and received one of three stimuli over the hand sensory cortex based on their current hand position as compared to a target aperture position. Using cortical stimulation feedback, subjects adjusted their hand aperture to move towards the target aperture region. One subject was able to achieve accuracies and R2 values well above chance (best performance: R2 = 0.93; accuracy = 0.76/1). Performance dropped during the catch trial (same stimulus independent of the position) to below chance levels, suggesting that the subject had been using the varied sensory feedback to modulate their motor behavior. To our knowledge, this study represents one of the first demonstrations of using direct cortical surface stimulation of the human sensory cortex to perform a motor task, and is a first step towards developing closed-loop human sensorimotor brain-computer interfaces.


Subject(s)
Electric Stimulation/methods , Feedback, Sensory/physiology , Hand/physiology , Motor Activity/physiology , Psychomotor Performance/physiology , Somatosensory Cortex/physiology , Adult , Brain-Computer Interfaces , Electrocorticography , Humans , Psychophysics
7.
PLoS One ; 10(9): e0137303, 2015.
Article in English | MEDLINE | ID: mdl-26398267

ABSTRACT

We present, to our knowledge, the first demonstration that a non-invasive brain-to-brain interface (BBI) can be used to allow one human to guess what is on the mind of another human through an interactive question-and-answering paradigm similar to the "20 Questions" game. As in previous non-invasive BBI studies in humans, our interface uses electroencephalography (EEG) to detect specific patterns of brain activity from one participant (the "respondent"), and transcranial magnetic stimulation (TMS) to deliver functionally-relevant information to the brain of a second participant (the "inquirer"). Our results extend previous BBI research by (1) using stimulation of the visual cortex to convey visual stimuli that are privately experienced and consciously perceived by the inquirer; (2) exploiting real-time rather than off-line communication of information from one brain to another; and (3) employing an interactive task, in which the inquirer and respondent must exchange information bi-directionally to collaboratively solve the task. The results demonstrate that using the BBI, ten participants (five inquirer-respondent pairs) can successfully identify a "mystery item" using a true/false question-answering protocol similar to the "20 Questions" game, with high levels of accuracy that are significantly greater than a control condition in which participants were connected through a sham BBI.


Subject(s)
Brain/physiology , Electroencephalography , Problem Solving , Transcranial Magnetic Stimulation , Adult , Evoked Potentials, Visual , Female , Humans , Male , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...