Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
Harmful Algae ; 127: 102472, 2023 08.
Article in English | MEDLINE | ID: mdl-37544672

ABSTRACT

During the spring and summer of 2019, an unprecedented cyanobacterial harmful algal bloom (cyanoHAB) was responsible for beach advisories on 25 beaches along the Mississippi Sound for over 3 months. Due to the preceding heavy rainfall and flooding within the Mississippi River watershed, for the first time in history, the Bonnet Carré Spillway (BCS) opened twice in one year during 2019. The coastal cyanoHAB coincided with the second BCS opening. The main objectives of this study were: (1) to investigate the potential for using the National Aeronautics and Space Administration (NASA) ocean color standard Cyanobacteria Index (CIcyano) algorithm to characterize the spatial and temporal extent of the 2019 cyanoHAB; (2) to couple the CIcyano data with river discharge, salinity, and modeled-wind data to study the conditions leading to the cyanoHAB and factors aiding the advection and persistence of the bloom within the Mississippi Sound, including a possible relationship to the BCS; (3) to further investigate the relationship with the BCS by repeating the methods using data from 2018, which was a year when the BCS was opened but no evidence of cyanoHABs was reported along the Mississippi coast. Weekly means and monthly frequency CIcyano images, river discharge, salinity, and modeled-wind data from February to September of 2018 and 2019 were analyzed, which coincide with three BCS openings. In March 2018, a cyanobacteria bloom was observed within Lake Pontchartrain coinciding with the BCS opening; however, the month-long bloom was contained to the lake. Two distinct cyanoHABs were observed in 2019 and both blooms were advected into the Mississippi Sound, and likely contributed to the 3-month-long beach water advisories of 2019 along the Mississippi coastline. From March to mid-July 2019, salinity at stations within the Mississippi Sound was consistently near zero indicating high levels of freshwater. During that time, winds were predominantly northwestward, preventing the BCS waters from flushing into the Mississippi Shelf and resulting in BCS waters remaining longer within the estuarine lakes and Mississippi Sound. Although the BCS had an undeniable impact on the presence of the coastal cyanoHAB of 2019, other variables including wind direction, water flow, mixing, and persistence of freshwater within the Sound can determine the intensity and extent of the cyanoHABs. Coupling in situ phytoplankton information from freshwater water bodies to the marine continuum along with water flow, wind data, and satellite imagery could help identify cyanoHABs at early stages and forecast their trajectory and potential impacts on coastal areas.


Subject(s)
Cyanobacteria , Harmful Algal Bloom , Phytoplankton , Lakes , Water
2.
Opt Express ; 25(8): A361-A374, 2017 Apr 17.
Article in English | MEDLINE | ID: mdl-28437922

ABSTRACT

Fowler's Sneaker Depth (FSD), analogous to the well known Secchi disk depth (Zsd), is a visually discerned citizen scientist metric used to assess water clarity in the Patuxent River estuary. In this study, a simple remote sensing algorithm was developed to derive FSD from space-borne spectroradiometric imagery. An empirical model was formed that estimates FSD from red-end remote sensing reflectances at 645 nm, Rrs(645). The model is based on a hyperbolic function relating water clarity to Rrs(645) that was established using radiative transfer modeling and fine tuned using in-water FSD measurements and coincident Rrs(645) data observed by NASA's Moderate Resolution Imaging Spectroradiometer aboard the Aqua spacecraft (MODISA). The resultant FSD algorithm was applied to Landsat-8 Operational Land Imager data to derive a short time-series for the Patuxent River estuary from January 2015 to June 2016. Satellite-derived FSD had an inverse, statistically significant relationship (p<0.005) with total suspended sediment concentration (TSS). Further, a distinct negative relationship between FSD and chlorophyll concentration was discerned during periods of high biomass (> 4 µg L-1). The complex nature of water quality in the mid-to-upper Chesapeake Bay was captured using a MODISA-based FSD time series (2002-2016). This study demonstrates how a citizen scientist-conceived observation can be coupled with remote sensing. With further refinement and validation, the FSD may be a useful tool for delivering scientifically relevant results and for informing and engaging local stakeholders and policy makers.

SELECTION OF CITATIONS
SEARCH DETAIL
...