Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 182
Filter
Add more filters










Publication year range
1.
Chem Sci ; 13(43): 12616-12624, 2022 Nov 09.
Article in English | MEDLINE | ID: mdl-36519045

ABSTRACT

In recent years, microplastics have been found in seawater, soil, food, and even human blood and tissues. The ubiquity of microplastics is alarming, but the health and environmental impacts of microplastics are just beginning to be understood. Accordingly, sampling, separating, and quantifying exposure to microplastics to devise a total risk assessment is the focus of ongoing research. Unfortunately, traditional separation methods (i.e., size- and density-based methods) unintentionally exclude the smallest microplastics (<10 µm). Limited data about the smallest microplastics is problematic because they are likely the most pervasive and have distinct properties from their larger plastic counterparts. To that end, in this Perspective, we discuss using electrokinetic methods for separating the smallest microplastics. Specifically, we describe three methods for forming electric field gradients, discuss key results within the field for continuously separating microplastics, and lastly discuss research avenues which we deem critical for advancing electrokinetic separation platforms for targeting the smallest microplastics.

2.
Chem Sci ; 13(42): 12479-12490, 2022 Nov 02.
Article in English | MEDLINE | ID: mdl-36349269

ABSTRACT

A key goal of nanoparticle-based catalysis research is to correlate the structure of nanoparticles (NPs) to their catalytic function. The most common approach for achieving this goal is to synthesize ensembles of NPs, characterize the ensemble, and then evaluate its catalytic properties. This approach is effective, but it excludes the certainty of structural heterogeneity in the NP ensemble. One means of addressing this shortcoming is to carry out analyses on individual NPs. This approach makes it possible to establish direct correlations between structures of single NPs and, in the case reported here, their electrocatalytic properties. Accordingly, we report on enhanced electrocatalytic formic acid oxidation (FAO) activity using individual Cu-modified, high-indexed Pt NPs. The results show that the Cu-modified Pt NPs exhibit significantly higher currents for FAO than the Pt-only analogs. The increased activity is enabled by the Cu submonolayer on the highly stepped Pt surface, which enhances the direct FAO pathway but not the indirect pathway which proceeds via surface-absorbed CO*.

3.
Nanomaterials (Basel) ; 12(22)2022 Nov 21.
Article in English | MEDLINE | ID: mdl-36432379

ABSTRACT

We report a systematic study of the electrocatalytic properties and stability of a series of 1-2 nm Au, Pd, and AuPd alloy nanoparticles (NPs) for the ethanol oxidation reaction (EOR). Following EOR electrocatalysis, NP sizes and compositions were characterized using aberration-corrected scanning transmission electron microscopy (ac-STEM) and energy dispersive spectroscopy (EDS). Two main findings emerge from this study. First, alloyed AuPd NPs exhibit enhanced electrocatalytic EOR activity compared to either monometallic Au or Pd NPs. Specifically, NPs having a 3:1 ratio of Au:Pd exhibit an ~8-fold increase in peak current density compared to Pd NPs, with an onset potential shifted ~200 mV more to the negative compared to Au NPs. Second, the size and composition of AuPd alloy NPs do not (within experimental error) change following 1.0 or 2.0 h chronoamperometry experiments, while monometallic Au NPs increase in size from 2 to 5 nm under the same conditions. Notably, this report demonstrates the importance of post-catalytic ac-STEM/EDS characterization for fully evaluating NP activity and stability, especially for 1-2 nm NPs that may change in size or structure during electrocatalysis.

4.
Nanomaterials (Basel) ; 12(13)2022 Jun 30.
Article in English | MEDLINE | ID: mdl-35808093

ABSTRACT

We report on the use of silver nanodisks (AgNDs), having a diameter of 50 ± 8 nm and a thickness of 8 ± 2 nm, as electrochemical labels for the detection of a model metalloimmunoassay for the heart failure biomarker NT-proBNP. The detection method is based on an electrochemically activated galvanic exchange (GE) followed by the detection of Ag using anodic stripping voltammetry (ASV). The AgNDs labels are superior to Ag nanocubes and Ag nanospheres in terms of the dynamic range for both the model and NT-proBNP metalloimmunoassays. The linear dynamic range for the model composite is 1.5 to 30.0 pM AgNDs. When AgND labels are used for the NT-proBNP assay, the dynamic range is 0.03-4.0 nM NT-proBNP. The latter range fully overlaps the risk stratification range for heart failure from 53 pM to 590 pM. The performance improvement of the AgNDs is a result of the specific GE mechanism for nanodisks. Specifically, GE is complete across the face of the AgNDs, leaving behind an incompletely exchanged ring structure composed of both Ag and Au.

5.
Soft Matter ; 18(27): 5067-5073, 2022 Jul 13.
Article in English | MEDLINE | ID: mdl-35758848

ABSTRACT

We report the presence of small clusters of atoms (<1 nm) (SCs) and single atoms (SAs) in solutions containing 1-2 nm dendrimer-encapsulated nanoparticles (DENs). Au and Pd DENs were imaged using aberration-corrected scanning transmission electron microscopy (ac-STEM), and energy dispersive spectroscopy (EDS) was used to identify and quantify the SAs/SCs. Two main findings have emerged from this work. First, the presence or absence of SAs/SCs depends on both the terminal functional group of the dendrimer (-NH2 or -OH) and the elemental composition of the DENs (Au or Pd). Second, dialysis can be used to remove the majority of SAs/SCs in cases where a high density of SAs/SCs are present. The foregoing conclusions provide insights into the mechanisms for Au and Pd DEN synthesis and stability. Ultimately, these results demonstrate the need for careful characterization of systems containing nanoparticles to ensure that SAs/SCs, which may be below the detection limit of most analytical methods, are taken into consideration (especially for catalysis experiments).

6.
Analyst ; 147(11): 2460-2469, 2022 May 30.
Article in English | MEDLINE | ID: mdl-35531909

ABSTRACT

Here we report an easily fabricated, plastic-based lateral flow device for carrying out metalloimmunoassays. The device is called ocFlow to emphasize the open-channel design. We have shown that the ocFlow is capable of magnetic microbead (MµB)-based metalloimmunoassays for the detection of two types of immunoconjugates: a model composite (MC) and a sandwich immunoassay for the heart failure marker NT-proBNP. In both assays, Ag nanoparticles (AgNPs) were used as electrochemically detectable labels. NT-proBNP and MC concentrations as low as 750.0 pM and 10.0 pM, respectively, could be detected using the ocFlow device. Four key conclusions can be drawn from the results presented herein. First, immunoconjugates attached to the MµBs can be transported in the flow channel using combined hydrodynamic and capillary pressure passive pumping. Second, the ocFlow device is capable of on-chip storage, resolvation, and conjugate formation of both the MC and NT-proBNP composites. Third, electrochemical detection can be conducted on analytes suspended in serum by rinsing the electrodes with a wash buffer. Finally, and perhaps most significantly, the assay is quantitative and has a detection limit for NT-proBNP in the high picomolar range when the necessary reagents are stored on the device in a dry form.


Subject(s)
Immunoconjugates , Metal Nanoparticles , Immunoassay/methods , Natriuretic Peptide, Brain , Peptide Fragments , Plastics , Silver
7.
Biosensors (Basel) ; 12(4)2022 Mar 29.
Article in English | MEDLINE | ID: mdl-35448263

ABSTRACT

In this article, we compare linear sweep anodic stripping voltammetry (LASV) and square-wave anodic stripping voltammetry (SWASV) for detection of a nano metalloimmunoassay. Two separate immunoassays were examined: a model assay, based on interactions between antibodies, and a sandwich assay for the heart failure marker NT-proBNP. In both cases, one antibody is linked to a magnetic microbead, and one is linked to a spherical Ag nanoparticle label. Electrochemical detection is carried out on a paper device. The three analytical figures of merit studied were the precision of the measurements, the calibration sensitivity, and the limit of detection (LOD). For the NT-proBNP assay, the results show that after optimization of the pulse amplitude and frequency of the potential input for SWASV, the detection efficiency is substantially higher compared to LASV. Specifically, the calibration sensitivity increased by up to ~40 fold, the average coefficient of variation decreased by ~40%, and the (LOD) decreased to 300.0 pM. Finally, for a model immunoassay, a ~10-fold decrease in the LOD was observed for SWASV compared to LASV.


Subject(s)
Heart Failure , Metal Nanoparticles , Antibodies , Electrodes , Heart Failure/diagnosis , Humans , Immunoassay/methods , Silver
8.
Nanomaterials (Basel) ; 12(5)2022 Mar 03.
Article in English | MEDLINE | ID: mdl-35269345

ABSTRACT

The concept of nanoparticle-mediated electron transfer (eT) across insulating thin films was elucidated theoretically by Allongue and Chazalviel in 2011. In their model, metal nanoparticles (NPs) are immobilized atop passivating, self-assembled monolayers (SAMs). They found that under certain conditions, related to the thickness of the SAM and the size of the NPs, efficient faradaic oxidation and reduction reactions could proceed at the NP surface. In the absence of NPs, however, eT was suppressed by the insulating SAM thin films. Allongue and Chazalviel concluded that, within certain bounds, eT is mediated by fast tunneling between the conductive electrode and the metal NPs, while the kinetics of the redox reaction are controlled by the NPs. This understanding has been confirmed using a variety of experimental models. The theory is based on electron tunneling; therefore, the nature of the intervening medium (the insulator in prior studies) should not affect the eT rate. In the present manuscript, however, we show that the theory breaks down under certain electrochemical conditions when the medium between conductors is an n-type semiconductor. Specifically, we find that in the presence of either Au or Pt NPs immobilized on a thin film of TiOx, CO electrooxidation does not proceed. In contrast, the exact same systems lead to the efficient reduction of oxygen. At present, we are unable to explain this finding within the context of the model of Allongue and Chazalviel.

9.
Lab Chip ; 22(3): 632-640, 2022 02 01.
Article in English | MEDLINE | ID: mdl-35018955

ABSTRACT

We report a method for electrochemical pH regulation in microdroplets generated in a microfluidic device. The key finding is that controlled quantities of reagents can be generated electrochemically in moving microdroplets confined within a microfluidic channel. Additionally, products generated at the anode and cathode can be isolated within descendant microdroplets. Specifically, ∼5 nL water-in-oil microdroplets are produced at a T-junction and then later split into two descendant droplets. During splitting, floor-patterned microelectrodes drive water electrolysis within the aqueous microdroplets to produce H+ and OH-. This results in a change in the pHs of the descendant droplets. The droplet pH can be regulated over a range of 5.9 to 7.7 by injecting controlled amounts of charge into the droplets. When the injected charge is between -6.3 and 54.5 nC nL-1, the measured pH of the resulting droplets is within ±0.1 pH units of that predicted based on the magnitude of the injected charge. This technique can likely be adapted to electrogeneration of other reagents within microdroplets.


Subject(s)
Lab-On-A-Chip Devices , Microfluidics , Indicators and Reagents , Microelectrodes , Water
10.
Chem Sci ; 12(41): 13744-13755, 2021 Oct 27.
Article in English | MEDLINE | ID: mdl-34760159

ABSTRACT

Here we use experiments and finite element simulations to investigate the electrokinetics within straight microchannels that contain a bipolar electrode and an unbuffered electrolyte solution. Our findings indicate that in the presence of a sufficiently high electric field, water electrolysis proceeds at the bipolar electrode and leads to variations in both solution conductivity and ionic current density along the length of the microchannel. The significance of this finding is twofold. First, the results indicate that both solution conductivity and ionic current density variations significantly contribute to yield sharp electric field gradients near the bipolar electrode poles. The key point is that ionic current density variations constitute a fundamentally new mechanism for forming electric field gradients in solution. Second, we show that the electric field gradients that form near the bipolar electrode poles in unbuffered solution are useful for continuously separating microplastics from water in a bifurcated microchannel. This result expands the potential scope of membrane-free separations using bipolar electrodes.

11.
ACS Nano ; 15(11): 17926-17937, 2021 Nov 23.
Article in English | MEDLINE | ID: mdl-34730934

ABSTRACT

We report a method for synthesizing and studying shape-controlled, single Pt nanoparticles (NPs) supported on carbon nanoelectrodes. The key advance is that the synthetic method makes it possible to produce single, electrochemically active NPs with a vast range of crystal structures and sizes. Equally important, the NPs can be fully characterized, and, therefore, the electrochemical properties of the NPs can be directly correlated to the size and structure of a single shape. This makes it possible to directly correlate experimental results to first-principles theory. Because just one well-characterized NP is analyzed at a time, the difficulty of applying a theoretical analysis to an ensemble of NPs having different sizes and structures is avoided. In this article, we report on two specific Pt NP shapes having sizes on the order of 200 nm: concave hexoctahedral (HOH) and concave trapezohedral (TPH). The former has {15 6 1} facets and the latter {10 1 1} facets. The electrochemical properties of these single NPs for the formic acid oxidation (FAO) reaction are compared to those of a single, spherical polycrystalline Pt NP of the same size. Finally, density functional theory, performed prior to the electrochemical studies, were used to interpret the experimental results of the FAO experiments.

12.
ACS Sens ; 6(5): 1956-1962, 2021 05 28.
Article in English | MEDLINE | ID: mdl-33885282

ABSTRACT

The effect of serum on electrochemical detection of bioassays having silver nanoparticle (AgNP) detection labels was investigated. Both a model assay and an antigen-specific sandwich bioassay for the heart failure marker NT-proBNP were examined. In both cases, the AgNP labels were conjugated to a detection antibody. Electrochemical detection was carried out using a galvanic exchange/anodic stripping voltammetry method in which Au3+ exchanges with AgNP labels. The assays were carried out using a paper-based electrode platform. The bioassays were exposed to different serum conditions prior to and during detection. There are three important outcomes reported in this article. First, both the model- and antigen-specific assays could be formed in undiluted serum with no detectable interferences from the serum components. Second, to achieve the maximum possible electrochemical signal, the highest percentage of serum that can remain in an assay buffer during electrochemical detection is 0.25% when no washing is performed. The assay results are rendered inaccurate when 0.50% or more of serum is present. Third, the factors inhibiting galvanic exchange in serum probably relate to surface adsorption of biomolecules onto the AgNP labels, chelation of Au3+ by serum components, or both. The results reported here provide general guidance for using metal NP labels for electrochemical assays in biofluids.


Subject(s)
Metal Nanoparticles , Silver , Antibodies , Biological Assay , Electrodes
13.
ACS Sens ; 6(3): 1111-1119, 2021 03 26.
Article in English | MEDLINE | ID: mdl-33439628

ABSTRACT

Here, we report on the use of 40 ± 4 nm silver nanocubes (AgNCs) as electrochemical labels in bioassays. The model metalloimmunoassay combines galvanic exchange (GE) and anodic stripping voltammetry (ASV). The results show that a lower limit of detection is achieved by simply changing the shape of the Ag label yielding improved GE with AgNCs when compared to GE with spherical silver nanoparticles (sAgNPs). Specifically, during GE between electrogenerated Au3+ and the Ag labels, a thin shell of Au forms on the surface of the NP. This shell is more porous when GE proceeds on AgNCs compared to sAgNPs, and therefore, more exchange occurs when using AgNCs. ASV results show that the Ag collection efficiency (AgCE%) is increased by up to ∼57% when using AgNCs. When the electrochemical system is fully optimized, the limit of detection is 0.1 pM AgNCs, which is an order of magnitude lower than that of sAgNP labels.


Subject(s)
Metal Nanoparticles , Silver , Biological Assay , Electrodes
14.
ACS Appl Nano Mater ; 4(10): 10764-10770, 2021 Oct 22.
Article in English | MEDLINE | ID: mdl-38404358

ABSTRACT

In this paper we demonstrate the use of dual-shaped silver nanoparticles (AgNPs) as detection labels for electrochemical bioassays. The key finding is that by using AgNP labels having two different shapes simultaneously, the limit of detection (LOD) for the assays is lowered compared to using either of the two shapes separately. The two shapes were silver nanocubes (AgNCs) having edge lengths of 40 ± 4 nm and spherical AgNPs (sAgNPs) having diameters of 20 ± 3 nm. Two different bioassays were examined. In both cases the Ag labels were functionalized with antibodies. In the one assay, the labels are directly linked to a second antibody immobilized on magnetic beads. In the second assay, the antibodies on the AgNP labels and the antibodies on the magnetic beads are linked via a peptide. The peptide is N-terminal prohormone brain natriuretic peptide (NT-proBNP), which is a heart failure marker. The efficacy of the two electrochemical assays as a function of the ratio of the two labels was investigated using a galvanic exchange/anodic stripping voltammetry method. The key finding is that by optimizing the ratio of the two types of AgNP labels, it is possible to decrease the LOD of the assays without compromising the dynamic range compared to using either of the two labels independently. This made it possible to achieve the clinically relevant range for NT-proBNP analysis used by physicians for heart failure risk stratification.

15.
Chem Sci ; 11(21): 5547-5558, 2020 Jun 07.
Article in English | MEDLINE | ID: mdl-32874498

ABSTRACT

In this article, we report continuous sorting of two microplastics in a trifurcated microfluidic channel using a new method called serial faradaic ion concentration polarization (fICP). fICP is an electrochemical method for forming ion depletion zones and their corresponding locally elevated electric fields in microchannels. By tuning the interplay between the forces of electromigration and convection during a fICP experiment, it is possible to control the flow of charged objects in microfluidic channels. The key findings of this report are threefold. First, fICP at two bipolar electrodes, configured in series and operated with a single power supply, yields two electric field gradients within a single microfluidic channel (i.e., serial fICP). Second, complex flow variations that adversely impact separations during fICP can be mitigated by minimizing convection by electroosmotic flow in favor of pressure-driven flow. Finally, serial fICP within a trifurcated microchannel is able to continuously and quantitatively focus, sort, and separate microplastics. These findings demonstrate that multiple local electric field gradients can be generated within a single microfluidic channel by simply placing metal wires at strategic locations. This approach opens a vast range of new possibilities for implementing membrane-free separations.

16.
Bioconjug Chem ; 31(10): 2383-2391, 2020 10 21.
Article in English | MEDLINE | ID: mdl-32970412

ABSTRACT

Peptide-functionalized nanoparticles (NPs) often rely on a well-defined peptide structure to function. Here, we report the attachment of model peptides to the ligand shell of AuNPs passivated with oligoethylene glycol (OEG). Specifically, peptides containing the repeating (LLKK)n motif plus either one or two reactive functional groups were covalently linked to OEG-capped, ∼5 nm AuNPs via the Cu+-catalyzed azide-alkyne cycloaddition reaction. This work builds on a previous study from our group in which an (LLKK)n peptide having two reactive functional groups was considered. Peptide attachment was confirmed by FTIR spectroscopy. Amino acid analysis was used to determine that 3-4 peptides were immobilized per AuNP. Circular dichroism spectroscopy revealed a structural change from random coil in solution to α-helical upon attachment to OEG-capped AuNPs. The key result of this study is that the nature of the capping layer on the AuNP surface influences peptide structure to a significant degree. Other important findings resulting from this work are that the AuNP-peptide conjugates reported here are water soluble and that the long axis of the helical peptides is oriented tangent to the AuNP surface. The latter point is important for applications involving biorecognition.


Subject(s)
Ethylenes/chemistry , Glycols/chemistry , Gold/chemistry , Metal Nanoparticles/chemistry , Peptides/chemistry , Alkynes/chemistry , Azides/chemistry , Cycloaddition Reaction , Models, Molecular , Protein Conformation, alpha-Helical
17.
Nanoscale ; 12(20): 11026-11039, 2020 May 28.
Article in English | MEDLINE | ID: mdl-32420580

ABSTRACT

Here we report on hydride-terminated (HT) electrodeposition of Pt multilayers onto ∼1.6 nm Au nanoparticles (NPs). The results build on our earlier findings regarding electrodeposition of a single monolayer of Pt onto Au NPs and reports relating to HT Pt electrodeposition onto bulk Au. In the latter case, it was found that electrodeposition of Pt from a solution containing PtCl42- can be limited to a single monolayer of Pt atoms if it is immediately followed by adsorption of a monolayer of H atoms. The H-atom capping layer prevents deposition of Pt multilayers. In the present report we are interested in comparing the structure of NPs after multiple HT Pt electrodeposition cycles to the bulk analog. The results indicate that a greater number of HT Pt cycles are required to electrodeposit both a single Pt monolayer and Pt multilayers onto these Au NPs compared to bulk Au. Additionally, detailed structural analysis shows that there are fundamental differences in the structures of the AuPt materials depending on whether they are prepared on Au NPs or bulk Au. The resulting structures have a profound impact on formic acid oxidation electrocatalysis.

18.
Lab Chip ; 20(9): 1648-1657, 2020 05 05.
Article in English | MEDLINE | ID: mdl-32255136

ABSTRACT

In the present article we report a new hybrid microfluidic device (hyFlow) comprising a disposable paper electrode and a three-dimensional (3D) printed plastic chip for the electrochemical detection of a magnetic bead-silver nanoparticle (MB-AgNP) bioconjugate. This hybrid device evolved due to the difficulty of incorporating micron-scale MBs into paper-only fluidic devices. Specifically, paper fluidic devices can entrap MB-containing conjugates within their cellulose or nitrocellulose fiber matrix. The hyFlow system was designed to minimize such issues and transport MB conjugates more efficiently to the electrochemical detection zone of the device. The hyFlow system retains the benefit of fluid transport by pressure-driven flow, however, no pump is required for its operation. The hyFlow device is capable of detecting either pre-formed MB-AgNP conjugates or conjugates formed in situ. The detection limit of AgNPs using this device is 12 pM, which represents just 22 AgNPs per MB.


Subject(s)
Electrochemical Techniques , Lab-On-A-Chip Devices , Metal Nanoparticles/analysis , Paper , Printing, Three-Dimensional , Silver/analysis
19.
ACS Sens ; 5(3): 853-860, 2020 03 27.
Article in English | MEDLINE | ID: mdl-32154707

ABSTRACT

In this paper, we demonstrate an electrochemical method for detection of the heart failure biomarker, N-terminal prohormone brain natriuretic peptide (NT-proBNP). The approach is based on a paper electrode assembly and a metalloimmunoassay; it is intended for eventual integration into a home-use sensor. Sensing of NT-proBNP relies on the formation of a sandwich immunoassay and electrochemical quantification of silver nanoparticle (AgNP) labels attached to the detection antibodies (Abs). There are four important outcomes reported in this article. First, compared to physisorption of the detection Abs on the AgNP labels, a 27-fold increase in signal is observed when a heterobifunctional cross-linker is used to facilitate this labeling. Second, the assay is selective in that it does not cross-react with other cardiac natriuretic peptides. Third, the assay forms in undiluted human serum (though the electrochemical analysis is carried out in buffer). Finally, and most important, the assay is able to detect NT-proBNP at concentrations between 0.58 and 2.33 nM. This performance approaches the critical NT-proBNP concentration threshold often used by physicians for risk stratification purposes: ∼0.116 nM.


Subject(s)
Electrochemical Techniques , Natriuretic Peptide, Brain/analysis , Peptide Fragments/analysis , Antibodies/chemistry , Electrodes , Humans , Immunoassay , Metal Nanoparticles/chemistry , Natriuretic Peptide, Brain/blood , Natriuretic Peptide, Brain/immunology , Paper , Peptide Fragments/blood , Peptide Fragments/immunology , Silver/chemistry
20.
Chem Rev ; 120(2): 814-850, 2020 01 22.
Article in English | MEDLINE | ID: mdl-31657551

ABSTRACT

The relationship between experiment and theory in electrocatalysis is one of profound importance. Until fairly recently, the principal role of theory in this field was interpreting experimental results. Over the course of the past decade (roughly the period covered by this review), however, that has begun to change, with theory now frequently leading the design of electrocatalytic materials. Though rewarding, this has not been a particularly easy union. For one thing, experimentalists and theorists have to come to grips with the fact that they rely on different models. Theorists make predictions based on individual, perfect structural models, while experimentalists work with more complex and heterogeneous ensembles of electrocatalysts. As discussed in this review, computational capabilities have improved in recent years, so that theory is better represented by the structures that experimentalists are able to prepare. Likewise, synthetic chemists are able to make ever more complex electrocatalysts with high levels of control, which provide a more extensive palette of materials for testing theory. The goal of this review is to highlight research from the last ∼10 years that focuses on carefully controlled electrocatalytic experiments which, in combination with theoretical predictions, bring us closer to bridging the gap between real catalysts and computational models.

SELECTION OF CITATIONS
SEARCH DETAIL
...