Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Science ; 380(6643): eabn1430, 2023 04 28.
Article in English | MEDLINE | ID: mdl-37104570

ABSTRACT

We examined transposable element (TE) content of 248 placental mammal genome assemblies, the largest de novo TE curation effort in eukaryotes to date. We found that although mammals resemble one another in total TE content and diversity, they show substantial differences with regard to recent TE accumulation. This includes multiple recent expansion and quiescence events across the mammalian tree. Young TEs, particularly long interspersed elements, drive increases in genome size, whereas DNA transposons are associated with smaller genomes. Mammals tend to accumulate only a few types of TEs at any given time, with one TE type dominating. We also found association between dietary habit and the presence of DNA transposon invasions. These detailed annotations will serve as a benchmark for future comparative TE analyses among placental mammals.


Subject(s)
DNA Transposable Elements , Eutheria , Evolution, Molecular , Genetic Variation , Animals , Female , Pregnancy , Long Interspersed Nucleotide Elements , Eutheria/genetics , Datasets as Topic , Feeding Behavior
2.
Mol Biol Evol ; 40(5)2023 05 02.
Article in English | MEDLINE | ID: mdl-37071810

ABSTRACT

Horizontal transfer of transposable elements (TEs) is an important mechanism contributing to genetic diversity and innovation. Bats (order Chiroptera) have repeatedly been shown to experience horizontal transfer of TEs at what appears to be a high rate compared with other mammals. We investigated the occurrence of horizontally transferred (HT) DNA transposons involving bats. We found over 200 putative HT elements within bats; 16 transposons were shared across distantly related mammalian clades, and 2 other elements were shared with a fish and two lizard species. Our results indicate that bats are a hotspot for horizontal transfer of DNA transposons. These events broadly coincide with the diversification of several bat clades, supporting the hypothesis that DNA transposon invasions have contributed to genetic diversification of bats.


Subject(s)
Chiroptera , DNA Transposable Elements , Animals , DNA Transposable Elements/genetics , Chiroptera/genetics , Gene Transfer, Horizontal , Evolution, Molecular , Mammals/genetics , Phylogeny
SELECTION OF CITATIONS
SEARCH DETAIL
...